Construct a nonabelian group of order 44 Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)The dihedral group $Vlanglealpharangle$Number of Sylow bases of a certain group of order 60Nonabelian group of order $p^3$ for odd prime $p$ and exponent $p$The only group of order $255$ is $mathbb Z_255$ ( Using Sylow and the $N/C$ Theorem)Number of elements of order $11$ in group of order $1331$Classifying groups of order $20$Construct a non-abelian group of order 75order of automorphism group of an abelian group of order 75Understanding a group of order $2^25.97^2$Understanding semidirect product for group of order 30

When speaking, how do you change your mind mid-sentence?

How is an IPA symbol that lacks a name (e.g. ɲ) called?

Married in secret, can marital status in passport be changed at a later date?

Does using the Inspiration rules for character defects encourage My Guy Syndrome?

How to make an animal which can only breed for a certain number of generations?

Why not use the yoke to control yaw, as well as pitch and roll?

Can this water damage be explained by lack of gutters and grading issues?

Why these surprising proportionalities of integrals involving odd zeta values?

Is the Mordenkainen's Sword spell underpowered?

What is the difference between 准时 and 按时?

Why are two-digit numbers in Jonathan Swift's "Gulliver's Travels" (1726) written in "German style"?

Pointing to problems without suggesting solutions

Are Flameskulls resistant to magical piercing damage?

Assertions In A Mock Callout Test

Putting Ant-Man on house arrest

Protagonist's race is hidden - should I reveal it?

What could prevent concentrated local exploration?

lm and glm function in R

Raising a bilingual kid. When should we introduce the majority language?

Does the Pact of the Blade warlock feature allow me to customize the properties of the pact weapon I create?

Can the van der Waals coefficients be negative in the van der Waals equation for real gases?

“Since the train was delayed for more than an hour, passengers were given a full refund.” – Why is there no article before “passengers”?

Proving inequality for positive definite matrix

What is the evidence that custom checks in Northern Ireland are going to result in violence?



Construct a nonabelian group of order 44



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)The dihedral group $Vlanglealpharangle$Number of Sylow bases of a certain group of order 60Nonabelian group of order $p^3$ for odd prime $p$ and exponent $p$The only group of order $255$ is $mathbb Z_255$ ( Using Sylow and the $N/C$ Theorem)Number of elements of order $11$ in group of order $1331$Classifying groups of order $20$Construct a non-abelian group of order 75order of automorphism group of an abelian group of order 75Understanding a group of order $2^25.97^2$Understanding semidirect product for group of order 30










6












$begingroup$


Let $G$ be a group s.t. $|G|=44=2^211$. Using Sylow's Theorems, I have deduced that there is a unique Sylow $11$-subgroup of $G$; we shall call it $R$. Let $P$ be a Sylow $2$-subgroup of $G$. Then we have $G=Prtimes R$ and a homomorphism



$$gamma: P rightarrow Aut(R)=Aut(mathbbZ_11)cong(mathbbZ_10,+) .$$



Is this all correct so far?



So what about $gamma(p)=phi_p$ where $phi_p(r)=r^5$. I thought this because $tilde5inmathbbZ_10$ has order $4$ so the order of any element of $P$ could divide it... or something...



So I was thinking the group would be something like



$$G= langle p,r | p^4=r^11 prp^-1=r^5 rangle .$$



Any insight is greatly appreciated! Thanks! I would like to know both where I went wrong and how to do it correctly.




Did I do the above right? Identifying $mathbbZ_11$ with the additive group of $mathbbZ_10$? Or should I look at it multiplicatively, because I don't understand how that isomorphism works so it doesn't make sense to define the conjugation that makes the semi-direct product well defined based on elements of the additive group $mathbbZ_10$, but instead realize that $10 in U(mathbbZ_11)$ has order $2$ so we can have a group presentation something like:



$G = langle p, r | p^2=r^11=1 , prp^-1=r^10 rangle$



Insight appreciated!



I understand the dihedral group of the $22$-gon works now, thank you. Can somebody help me with my approach in constructing a non-abelian group of order $44$ via the methods I've been using? Thanks!










share|cite|improve this question











$endgroup$











  • $begingroup$
    I think you meant $r^11$ (r^11), not $r^11$ (r^11)
    $endgroup$
    – J. W. Tanner
    4 hours ago










  • $begingroup$
    I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
    $endgroup$
    – Travis
    3 hours ago










  • $begingroup$
    I don’t understand the words, “because $tilde5inBbb Z_10$ has order $4$”
    $endgroup$
    – Lubin
    3 hours ago










  • $begingroup$
    Doesn't $tilde5 in mathbbZ_10$ have order $2$?
    $endgroup$
    – Peter Shor
    2 hours ago










  • $begingroup$
    And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
    $endgroup$
    – Peter Shor
    2 hours ago















6












$begingroup$


Let $G$ be a group s.t. $|G|=44=2^211$. Using Sylow's Theorems, I have deduced that there is a unique Sylow $11$-subgroup of $G$; we shall call it $R$. Let $P$ be a Sylow $2$-subgroup of $G$. Then we have $G=Prtimes R$ and a homomorphism



$$gamma: P rightarrow Aut(R)=Aut(mathbbZ_11)cong(mathbbZ_10,+) .$$



Is this all correct so far?



So what about $gamma(p)=phi_p$ where $phi_p(r)=r^5$. I thought this because $tilde5inmathbbZ_10$ has order $4$ so the order of any element of $P$ could divide it... or something...



So I was thinking the group would be something like



$$G= langle p,r | p^4=r^11 prp^-1=r^5 rangle .$$



Any insight is greatly appreciated! Thanks! I would like to know both where I went wrong and how to do it correctly.




Did I do the above right? Identifying $mathbbZ_11$ with the additive group of $mathbbZ_10$? Or should I look at it multiplicatively, because I don't understand how that isomorphism works so it doesn't make sense to define the conjugation that makes the semi-direct product well defined based on elements of the additive group $mathbbZ_10$, but instead realize that $10 in U(mathbbZ_11)$ has order $2$ so we can have a group presentation something like:



$G = langle p, r | p^2=r^11=1 , prp^-1=r^10 rangle$



Insight appreciated!



I understand the dihedral group of the $22$-gon works now, thank you. Can somebody help me with my approach in constructing a non-abelian group of order $44$ via the methods I've been using? Thanks!










share|cite|improve this question











$endgroup$











  • $begingroup$
    I think you meant $r^11$ (r^11), not $r^11$ (r^11)
    $endgroup$
    – J. W. Tanner
    4 hours ago










  • $begingroup$
    I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
    $endgroup$
    – Travis
    3 hours ago










  • $begingroup$
    I don’t understand the words, “because $tilde5inBbb Z_10$ has order $4$”
    $endgroup$
    – Lubin
    3 hours ago










  • $begingroup$
    Doesn't $tilde5 in mathbbZ_10$ have order $2$?
    $endgroup$
    – Peter Shor
    2 hours ago










  • $begingroup$
    And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
    $endgroup$
    – Peter Shor
    2 hours ago













6












6








6


2



$begingroup$


Let $G$ be a group s.t. $|G|=44=2^211$. Using Sylow's Theorems, I have deduced that there is a unique Sylow $11$-subgroup of $G$; we shall call it $R$. Let $P$ be a Sylow $2$-subgroup of $G$. Then we have $G=Prtimes R$ and a homomorphism



$$gamma: P rightarrow Aut(R)=Aut(mathbbZ_11)cong(mathbbZ_10,+) .$$



Is this all correct so far?



So what about $gamma(p)=phi_p$ where $phi_p(r)=r^5$. I thought this because $tilde5inmathbbZ_10$ has order $4$ so the order of any element of $P$ could divide it... or something...



So I was thinking the group would be something like



$$G= langle p,r | p^4=r^11 prp^-1=r^5 rangle .$$



Any insight is greatly appreciated! Thanks! I would like to know both where I went wrong and how to do it correctly.




Did I do the above right? Identifying $mathbbZ_11$ with the additive group of $mathbbZ_10$? Or should I look at it multiplicatively, because I don't understand how that isomorphism works so it doesn't make sense to define the conjugation that makes the semi-direct product well defined based on elements of the additive group $mathbbZ_10$, but instead realize that $10 in U(mathbbZ_11)$ has order $2$ so we can have a group presentation something like:



$G = langle p, r | p^2=r^11=1 , prp^-1=r^10 rangle$



Insight appreciated!



I understand the dihedral group of the $22$-gon works now, thank you. Can somebody help me with my approach in constructing a non-abelian group of order $44$ via the methods I've been using? Thanks!










share|cite|improve this question











$endgroup$




Let $G$ be a group s.t. $|G|=44=2^211$. Using Sylow's Theorems, I have deduced that there is a unique Sylow $11$-subgroup of $G$; we shall call it $R$. Let $P$ be a Sylow $2$-subgroup of $G$. Then we have $G=Prtimes R$ and a homomorphism



$$gamma: P rightarrow Aut(R)=Aut(mathbbZ_11)cong(mathbbZ_10,+) .$$



Is this all correct so far?



So what about $gamma(p)=phi_p$ where $phi_p(r)=r^5$. I thought this because $tilde5inmathbbZ_10$ has order $4$ so the order of any element of $P$ could divide it... or something...



So I was thinking the group would be something like



$$G= langle p,r | p^4=r^11 prp^-1=r^5 rangle .$$



Any insight is greatly appreciated! Thanks! I would like to know both where I went wrong and how to do it correctly.




Did I do the above right? Identifying $mathbbZ_11$ with the additive group of $mathbbZ_10$? Or should I look at it multiplicatively, because I don't understand how that isomorphism works so it doesn't make sense to define the conjugation that makes the semi-direct product well defined based on elements of the additive group $mathbbZ_10$, but instead realize that $10 in U(mathbbZ_11)$ has order $2$ so we can have a group presentation something like:



$G = langle p, r | p^2=r^11=1 , prp^-1=r^10 rangle$



Insight appreciated!



I understand the dihedral group of the $22$-gon works now, thank you. Can somebody help me with my approach in constructing a non-abelian group of order $44$ via the methods I've been using? Thanks!







abstract-algebra group-theory sylow-theory group-presentation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Travis

64.6k769152




64.6k769152










asked 5 hours ago









Mathematical MushroomMathematical Mushroom

22418




22418











  • $begingroup$
    I think you meant $r^11$ (r^11), not $r^11$ (r^11)
    $endgroup$
    – J. W. Tanner
    4 hours ago










  • $begingroup$
    I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
    $endgroup$
    – Travis
    3 hours ago










  • $begingroup$
    I don’t understand the words, “because $tilde5inBbb Z_10$ has order $4$”
    $endgroup$
    – Lubin
    3 hours ago










  • $begingroup$
    Doesn't $tilde5 in mathbbZ_10$ have order $2$?
    $endgroup$
    – Peter Shor
    2 hours ago










  • $begingroup$
    And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
    $endgroup$
    – Peter Shor
    2 hours ago
















  • $begingroup$
    I think you meant $r^11$ (r^11), not $r^11$ (r^11)
    $endgroup$
    – J. W. Tanner
    4 hours ago










  • $begingroup$
    I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
    $endgroup$
    – Travis
    3 hours ago










  • $begingroup$
    I don’t understand the words, “because $tilde5inBbb Z_10$ has order $4$”
    $endgroup$
    – Lubin
    3 hours ago










  • $begingroup$
    Doesn't $tilde5 in mathbbZ_10$ have order $2$?
    $endgroup$
    – Peter Shor
    2 hours ago










  • $begingroup$
    And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
    $endgroup$
    – Peter Shor
    2 hours ago















$begingroup$
I think you meant $r^11$ (r^11), not $r^11$ (r^11)
$endgroup$
– J. W. Tanner
4 hours ago




$begingroup$
I think you meant $r^11$ (r^11), not $r^11$ (r^11)
$endgroup$
– J. W. Tanner
4 hours ago












$begingroup$
I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
$endgroup$
– Travis
3 hours ago




$begingroup$
I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
$endgroup$
– Travis
3 hours ago












$begingroup$
I don’t understand the words, “because $tilde5inBbb Z_10$ has order $4$”
$endgroup$
– Lubin
3 hours ago




$begingroup$
I don’t understand the words, “because $tilde5inBbb Z_10$ has order $4$”
$endgroup$
– Lubin
3 hours ago












$begingroup$
Doesn't $tilde5 in mathbbZ_10$ have order $2$?
$endgroup$
– Peter Shor
2 hours ago




$begingroup$
Doesn't $tilde5 in mathbbZ_10$ have order $2$?
$endgroup$
– Peter Shor
2 hours ago












$begingroup$
And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
$endgroup$
– Peter Shor
2 hours ago




$begingroup$
And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
$endgroup$
– Peter Shor
2 hours ago










2 Answers
2






active

oldest

votes


















1












$begingroup$

No element of $mathbb Z_10$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_10$ under addition, $10cong -1in mathbb Z_11^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_11timesmathbbZ_4$, $mathbb Z_11times mathbbZ_2times mathbb Z_2$, and two nonabelian groups: $mathbbZ_11 rtimes mathbb Z_4 = langle a,b mid a^11, b^4, b^-1ab = a^-1rangle$ and $mathbb Z_11rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^11, b^2, c^2, [b,c], b^-1ab = c^-1ac = a^-1 rangle$. I think the latter is $D_22$ (for 22-gon, not order of group), while the former has an element of order $4$.






share|cite|improve this answer











$endgroup$




















    0












    $begingroup$

    You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



    In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatornameid_Bbb Z_11 = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$ are $operatornameid_Bbb Z_11 leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.



    • If $gamma([1]) = operatornameid_Bbb Z_11$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatornameAut(Bbb Z_11)$. This gives the direct product $G cong Bbb Z_11 times Bbb Z_4 cong Bbb Z_44 .$


    • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_11 rtimes_gamma Bbb Z_4$ is defined by
      $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.


    One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_11 times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_44 cong D_22 times Bbb Z_2$.






    share|cite|improve this answer











    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197658%2fconstruct-a-nonabelian-group-of-order-44%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      No element of $mathbb Z_10$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_10$ under addition, $10cong -1in mathbb Z_11^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



      So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



      Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_11timesmathbbZ_4$, $mathbb Z_11times mathbbZ_2times mathbb Z_2$, and two nonabelian groups: $mathbbZ_11 rtimes mathbb Z_4 = langle a,b mid a^11, b^4, b^-1ab = a^-1rangle$ and $mathbb Z_11rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^11, b^2, c^2, [b,c], b^-1ab = c^-1ac = a^-1 rangle$. I think the latter is $D_22$ (for 22-gon, not order of group), while the former has an element of order $4$.






      share|cite|improve this answer











      $endgroup$

















        1












        $begingroup$

        No element of $mathbb Z_10$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_10$ under addition, $10cong -1in mathbb Z_11^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



        So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



        Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_11timesmathbbZ_4$, $mathbb Z_11times mathbbZ_2times mathbb Z_2$, and two nonabelian groups: $mathbbZ_11 rtimes mathbb Z_4 = langle a,b mid a^11, b^4, b^-1ab = a^-1rangle$ and $mathbb Z_11rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^11, b^2, c^2, [b,c], b^-1ab = c^-1ac = a^-1 rangle$. I think the latter is $D_22$ (for 22-gon, not order of group), while the former has an element of order $4$.






        share|cite|improve this answer











        $endgroup$















          1












          1








          1





          $begingroup$

          No element of $mathbb Z_10$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_10$ under addition, $10cong -1in mathbb Z_11^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



          So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



          Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_11timesmathbbZ_4$, $mathbb Z_11times mathbbZ_2times mathbb Z_2$, and two nonabelian groups: $mathbbZ_11 rtimes mathbb Z_4 = langle a,b mid a^11, b^4, b^-1ab = a^-1rangle$ and $mathbb Z_11rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^11, b^2, c^2, [b,c], b^-1ab = c^-1ac = a^-1 rangle$. I think the latter is $D_22$ (for 22-gon, not order of group), while the former has an element of order $4$.






          share|cite|improve this answer











          $endgroup$



          No element of $mathbb Z_10$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_10$ under addition, $10cong -1in mathbb Z_11^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



          So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



          Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_11timesmathbbZ_4$, $mathbb Z_11times mathbbZ_2times mathbb Z_2$, and two nonabelian groups: $mathbbZ_11 rtimes mathbb Z_4 = langle a,b mid a^11, b^4, b^-1ab = a^-1rangle$ and $mathbb Z_11rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^11, b^2, c^2, [b,c], b^-1ab = c^-1ac = a^-1 rangle$. I think the latter is $D_22$ (for 22-gon, not order of group), while the former has an element of order $4$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 1 hour ago

























          answered 2 hours ago









          Rylee LymanRylee Lyman

          646211




          646211





















              0












              $begingroup$

              You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



              In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatornameid_Bbb Z_11 = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$ are $operatornameid_Bbb Z_11 leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.



              • If $gamma([1]) = operatornameid_Bbb Z_11$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatornameAut(Bbb Z_11)$. This gives the direct product $G cong Bbb Z_11 times Bbb Z_4 cong Bbb Z_44 .$


              • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_11 rtimes_gamma Bbb Z_4$ is defined by
                $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.


              One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_11 times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_44 cong D_22 times Bbb Z_2$.






              share|cite|improve this answer











              $endgroup$

















                0












                $begingroup$

                You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



                In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatornameid_Bbb Z_11 = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$ are $operatornameid_Bbb Z_11 leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.



                • If $gamma([1]) = operatornameid_Bbb Z_11$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatornameAut(Bbb Z_11)$. This gives the direct product $G cong Bbb Z_11 times Bbb Z_4 cong Bbb Z_44 .$


                • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_11 rtimes_gamma Bbb Z_4$ is defined by
                  $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.


                One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_11 times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_44 cong D_22 times Bbb Z_2$.






                share|cite|improve this answer











                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



                  In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatornameid_Bbb Z_11 = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$ are $operatornameid_Bbb Z_11 leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.



                  • If $gamma([1]) = operatornameid_Bbb Z_11$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatornameAut(Bbb Z_11)$. This gives the direct product $G cong Bbb Z_11 times Bbb Z_4 cong Bbb Z_44 .$


                  • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_11 rtimes_gamma Bbb Z_4$ is defined by
                    $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.


                  One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_11 times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_44 cong D_22 times Bbb Z_2$.






                  share|cite|improve this answer











                  $endgroup$



                  You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



                  In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatornameid_Bbb Z_11 = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$ are $operatornameid_Bbb Z_11 leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.



                  • If $gamma([1]) = operatornameid_Bbb Z_11$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatornameAut(Bbb Z_11)$. This gives the direct product $G cong Bbb Z_11 times Bbb Z_4 cong Bbb Z_44 .$


                  • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_11 rtimes_gamma Bbb Z_4$ is defined by
                    $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.


                  One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_11 times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_44 cong D_22 times Bbb Z_2$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 1 hour ago

























                  answered 2 hours ago









                  TravisTravis

                  64.6k769152




                  64.6k769152



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197658%2fconstruct-a-nonabelian-group-of-order-44%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      یوتیوب محتویات پیشینه[ویرایش] فناوری‌های ویدئویی[ویرایش] شوخی‌های آوریل[ویرایش] سانسور و فیلترینگ[ویرایش] آمار و ارقامی از یوتیوب[ویرایش] تأثیر اجتماعی[ویرایش] سیاست اجتماعی[ویرایش] نمودارها[ویرایش] یادداشت‌ها[ویرایش] پانویس[ویرایش] پیوند به بیرون[ویرایش] منوی ناوبریبررسی شده‌استYouTube.com[بروزرسانی]"Youtube.com Site Info""زبان‌های یوتیوب""Surprise! There's a third YouTube co-founder"سایت یوتیوب برای چندمین بار در ایران فیلتر شدنسخهٔ اصلیسالار کمانگر جوان آمریکایی ایرانی الاصل مدیر سایت یوتیوب شدنسخهٔ اصلیVideo websites pop up, invite postingsthe originalthe originalYouTube: Overnight success has sparked a backlashthe original"Me at the zoo"YouTube serves up 100 million videos a day onlinethe originalcomScore Releases May 2010 U.S. Online Video Rankingsthe originalYouTube hits 4 billion daily video viewsthe originalYouTube users uploading two days of video every minutethe originalEric Schmidt, Princeton Colloquium on Public & Int'l Affairsthe original«Streaming Dreams»نسخهٔ اصلیAlexa Traffic Rank for YouTube (three month average)the originalHelp! YouTube is killing my business!the originalUtube sues YouTubethe originalGoogle closes $A2b YouTube dealthe originalFlash moves on to smart phonesthe originalYouTube HTML5 Video Playerنسخهٔ اصلیYouTube HTML5 Video Playerthe originalGoogle tries freeing Web video with WebMthe originalVideo length for uploadingthe originalYouTube caps video lengths to reduce infringementthe originalAccount Types: Longer videosthe originalYouTube bumps video limit to 15 minutesthe originalUploading large files and resumable uploadingthe originalVideo Formats: File formatsthe originalGetting Started: File formatsthe originalThe quest for a new video codec in Flash 8the originalAdobe Flash Video File Format Specification Version 10.1the originalYouTube Mobile goes livethe originalYouTube videos go HD with a simple hackthe originalYouTube now supports 4k-resolution videosthe originalYouTube to get high-def 1080p playerthe original«Approximate YouTube Bitrates»نسخهٔ اصلی«Bigger and Better: Encoding for YouTube 720p HD»نسخهٔ اصلی«YouTube's 1080p – Failure Depends on How You Look At It»نسخهٔ اصلیYouTube in 3Dthe originalYouTube in 3D?the originalYouTube 3D Videosthe originalYouTube adds a dimension, 3D goggles not includedthe originalYouTube Adds Stereoscopic 3D Video Support (And 3D Vision Support, Too)the original«Sharing YouTube Videos»نسخهٔ اصلی«Downloading videos from YouTube is not supported, except for one instance when it is permitted.»نسخهٔ اصلی«Terms of Use, 5.B»نسخهٔ اصلی«Some YouTube videos get download option»نسخهٔ اصلی«YouTube looks out for content owners, disables video ripping»«Downloading videos from YouTube is not supported, except for one instance when it is permitted.»نسخهٔ اصلی«YouTube Hopes To Boost Revenue With Video Downloads»نسخهٔ اصلی«YouTube Mobile»نسخهٔ اصلی«YouTube Live on Apple TV Today; Coming to iPhone on June 29»نسخهٔ اصلی«Goodbye Flash: YouTube mobile goes HTML5 on iPhone and Android»نسخهٔ اصلی«YouTube Mobile Goes HTML5, Video Quality Beats Native Apps Hands Down»نسخهٔ اصلی«TiVo Getting YouTube Streaming Today»نسخهٔ اصلی«YouTube video comes to Wii and PlayStation 3 game consoles»نسخهٔ اصلی«Coming Up Next... YouTube on Your TV»نسخهٔ اصلی«Experience YouTube XL on the Big Screen»نسخهٔ اصلی«Xbox Live Getting Live TV, YouTube & Bing Voice Search»نسخهٔ اصلی«YouTube content locations»نسخهٔ اصلی«April fools: YouTube turns the world up-side-down»نسخهٔ اصلی«YouTube goes back to 1911 for April Fools' Day»نسخهٔ اصلی«Simon Cowell's bromance, the self-driving Nascar and Hungry Hippos for iPad... the best April Fools' gags»نسخهٔ اصلی"YouTube Announces It Will Shut Down""YouTube Adds Darude 'Sandstorm' Button To Its Videos For April Fools' Day"«Censorship fears rise as Iran blocks access to top websites»نسخهٔ اصلی«China 'blocks YouTube video site'»نسخهٔ اصلی«YouTube shut down in Morocco»نسخهٔ اصلی«Thailand blocks access to YouTube»نسخهٔ اصلی«Ban on YouTube lifted after deal»نسخهٔ اصلی«Google's Gatekeepers»نسخهٔ اصلی«Turkey goes into battle with Google»نسخهٔ اصلی«Turkey lifts two-year ban on YouTube»نسخهٔ اصلیسانسور در ترکیه به یوتیوب رسیدلغو فیلترینگ یوتیوب در ترکیه«Pakistan blocks YouTube website»نسخهٔ اصلی«Pakistan lifts the ban on YouTube»نسخهٔ اصلی«Pakistan blocks access to YouTube in internet crackdown»نسخهٔ اصلی«Watchdog urges Libya to stop blocking websites»نسخهٔ اصلی«YouTube»نسخهٔ اصلی«Due to abuses of religion, customs Emirates, YouTube is blocked in the UAE»نسخهٔ اصلی«Google Conquered The Web - An Ultimate Winner»نسخهٔ اصلی«100 million videos are viewed daily on YouTube»نسخهٔ اصلی«Harry and Charlie Davies-Carr: Web gets taste for biting baby»نسخهٔ اصلی«Meet YouTube's 224 million girl, Natalie Tran»نسخهٔ اصلی«YouTube to Double Down on Its 'Channel' Experiment»نسخهٔ اصلی«13 Some Media Companies Choose to Profit From Pirated YouTube Clips»نسخهٔ اصلی«Irate HK man unlikely Web hero»نسخهٔ اصلی«Web Guitar Wizard Revealed at Last»نسخهٔ اصلی«Charlie bit my finger – again!»نسخهٔ اصلی«Lowered Expectations: Web Redefines 'Quality'»نسخهٔ اصلی«YouTube's 50 Greatest Viral Videos»نسخهٔ اصلیYouTube Community Guidelinesthe original«Why did my YouTube account get closed down?»نسخهٔ اصلی«Why do I have a sanction on my account?»نسخهٔ اصلی«Is YouTube's three-strike rule fair to users?»نسخهٔ اصلی«Viacom will sue YouTube for $1bn»نسخهٔ اصلی«Mediaset Files EUR500 Million Suit Vs Google's YouTube»نسخهٔ اصلی«Premier League to take action against YouTube»نسخهٔ اصلی«YouTube law fight 'threatens net'»نسخهٔ اصلی«Google must divulge YouTube log»نسخهٔ اصلی«Google Told to Turn Over User Data of YouTube»نسخهٔ اصلی«US judge tosses out Viacom copyright suit against YouTube»نسخهٔ اصلی«Google and Viacom: YouTube copyright lawsuit back on»نسخهٔ اصلی«Woman can sue over YouTube clip de-posting»نسخهٔ اصلی«YouTube loses court battle over music clips»نسخهٔ اصلیYouTube to Test Software To Ease Licensing Fightsthe original«Press Statistics»نسخهٔ اصلی«Testing YouTube's Audio Content ID System»نسخهٔ اصلی«Content ID disputes»نسخهٔ اصلیYouTube Community Guidelinesthe originalYouTube criticized in Germany over anti-Semitic Nazi videosthe originalFury as YouTube carries sick Hillsboro video insultthe originalYouTube attacked by MPs over sex and violence footagethe originalAl-Awlaki's YouTube Videos Targeted by Rep. Weinerthe originalYouTube Withdraws Cleric's Videosthe originalYouTube is letting users decide on terrorism-related videosthe original«Time's Person of the Year: You»نسخهٔ اصلی«Our top 10 funniest YouTube comments – what are yours?»نسخهٔ اصلی«YouTube's worst comments blocked by filter»نسخهٔ اصلی«Site Info YouTube»نسخهٔ اصلیوبگاه YouTubeوبگاه موبایل YouTubeوووووو

                      Magento 2 - Auto login with specific URL Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Customer can't login - Page refreshes but nothing happensCustom Login page redirectURL to login with redirect URL after completionCustomer login is case sensitiveLogin with phone number or email address - Magento 1.9Magento 2: Set Customer Account Confirmation StatusCustomer auto connect from URLHow to call customer login form in the custom module action magento 2?Change of customer login error message magento2Referrer URL in modal login form

                      Rest API with Magento using PHP with example. Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How to update product using magento client library for PHP?Oauth Error while extending Magento Rest APINot showing my custom api in wsdl(url) and web service list?Using Magento API(REST) via IXMLHTTPRequest COM ObjectHow to login in Magento website using REST APIREST api call for Guest userMagento API calling using HTML and javascriptUse API rest media management by storeView code (admin)Magento REST API Example ErrorsHow to log all rest api calls in magento2?How to update product using magento client library for PHP?