Closed subgroups of abelian groupsEmbedded Lie subgroups are closed.The injectivity of torus in the category of abelian Lie groupsCenter of compact lie group closed?Closedness of connected semisimple Lie subgroups of semisimple groupsIntersection of a family of closed Lie subgroupsExamples about maximal Abelian subgroup is not a maximal torus in compact connected Lie group $G$.A question on abelian Lie groups and maximal compact subgroupReal and complex nilpotent Lie groupsClosed Subgroups of Lie Groups are closed Lie Subgroups?Lattice and abelian Lie groups
How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?
What does "enim et" mean?
Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?
Schwarzchild Radius of the Universe
Can you lasso down a wizard who is using the Levitate spell?
Circuitry of TV splitters
What typically incentivizes a professor to change jobs to a lower ranking university?
Copycat chess is back
XeLaTeX and pdfLaTeX ignore hyphenation
Is it possible to make sharp wind that can cut stuff from afar?
How do I create uniquely male characters?
"The augmented fourth (A4) and the diminished fifth (d5) are the only augmented and diminished intervals that appear in diatonic scales"
How to register event with useEffect hooks?
DOS, create pipe for stdin/stdout of command.com(or 4dos.com) in C or Batch?
Is there a familial term for apples and pears?
Where to refill my bottle in India?
How to use Pandas to get the count of every combination inclusive
New order #4: World
Infinite past with a beginning?
Modification to Chariots for Heavy Cavalry Analogue for 4-armed race
How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?
What is the offset in a seaplane's hull?
Finding files for which a command fails
How does one intimidate enemies without having the capacity for violence?
Closed subgroups of abelian groups
Embedded Lie subgroups are closed.The injectivity of torus in the category of abelian Lie groupsCenter of compact lie group closed?Closedness of connected semisimple Lie subgroups of semisimple groupsIntersection of a family of closed Lie subgroupsExamples about maximal Abelian subgroup is not a maximal torus in compact connected Lie group $G$.A question on abelian Lie groups and maximal compact subgroupReal and complex nilpotent Lie groupsClosed Subgroups of Lie Groups are closed Lie Subgroups?Lattice and abelian Lie groups
$begingroup$
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?
general-topology differential-geometry lie-groups lie-algebras
$endgroup$
add a comment |
$begingroup$
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?
general-topology differential-geometry lie-groups lie-algebras
$endgroup$
2
$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
3 hours ago
add a comment |
$begingroup$
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?
general-topology differential-geometry lie-groups lie-algebras
$endgroup$
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?
general-topology differential-geometry lie-groups lie-algebras
general-topology differential-geometry lie-groups lie-algebras
edited 5 hours ago
Clayton
19.6k33288
19.6k33288
asked 5 hours ago
Amrat AAmrat A
345111
345111
2
$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
3 hours ago
add a comment |
2
$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
3 hours ago
2
2
$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
3 hours ago
$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
3 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$
and
$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
$endgroup$
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
5 hours ago
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
5 hours ago
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
5 hours ago
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
4 hours ago
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
4 hours ago
|
show 5 more comments
$begingroup$
Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).
$endgroup$
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
3 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179002%2fclosed-subgroups-of-abelian-groups%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$
and
$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
$endgroup$
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
5 hours ago
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
5 hours ago
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
5 hours ago
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
4 hours ago
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
4 hours ago
|
show 5 more comments
$begingroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$
and
$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
$endgroup$
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
5 hours ago
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
5 hours ago
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
5 hours ago
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
4 hours ago
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
4 hours ago
|
show 5 more comments
$begingroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$
and
$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
$endgroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$
and
$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
edited 3 hours ago
answered 5 hours ago
Alex YoucisAlex Youcis
36.1k775115
36.1k775115
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
5 hours ago
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
5 hours ago
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
5 hours ago
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
4 hours ago
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
4 hours ago
|
show 5 more comments
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
5 hours ago
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
5 hours ago
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
5 hours ago
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
4 hours ago
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
4 hours ago
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
5 hours ago
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
5 hours ago
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
5 hours ago
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
5 hours ago
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
5 hours ago
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
5 hours ago
1
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
4 hours ago
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
4 hours ago
1
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
4 hours ago
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
4 hours ago
|
show 5 more comments
$begingroup$
Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).
$endgroup$
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
3 hours ago
add a comment |
$begingroup$
Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).
$endgroup$
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
3 hours ago
add a comment |
$begingroup$
Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).
$endgroup$
Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).
answered 3 hours ago
RandallRandall
10.7k11431
10.7k11431
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
3 hours ago
add a comment |
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
3 hours ago
2
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
3 hours ago
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
3 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179002%2fclosed-subgroups-of-abelian-groups%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
3 hours ago