Schwarzchild Radius of the UniverseIs the “far” universe expanding more quickly?Does the math work out for there being enough time for the formation of the heavier elements and their distribution as seen in today's universe?How is the universe expanding?What would happen in the final days of the universe?How much of the universe is observable at visible wavelengths?What's the point of looking at distances beyond $13,7$ billion light years?How long was the universe radiation dominated?physical meaning of dark matter virial radiusWhat happens in the event that the cooling radius is shorter than the virial radius of a Cold Dark Matter Halo?The Cosmic Microwave Background Paradox
Calculus Optimization - Point on graph closest to given point
Why are 150k or 200k jobs considered good when there are 300k+ births a month?
Simulate Bitwise Cyclic Tag
How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)
What is the command to reset a PC without deleting any files
Why is "Reports" in sentence down without "The"
Non-Jewish family in an Orthodox Jewish Wedding
Can a German sentence have two subjects?
LED on same Pin as Toggle Switch, not illuminating
Extreme, but not acceptable situation and I can't start the work tomorrow morning
What would happen to a modern skyscraper if it rains micro blackholes?
How to report a triplet of septets in NMR tabulation?
Chess with symmetric move-square
Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)
Email Account under attack (really) - anything I can do?
Schwarzchild Radius of the Universe
Can Medicine checks be used, with decent rolls, to completely mitigate the risk of death from ongoing damage?
What is the white spray-pattern residue inside these Falcon Heavy nozzles?
What typically incentivizes a professor to change jobs to a lower ranking university?
XeLaTeX and pdfLaTeX ignore hyphenation
Japan - Plan around max visa duration
What is the meaning of "of trouble" in the following sentence?
Can you lasso down a wizard who is using the Levitate spell?
What defenses are there against being summoned by the Gate spell?
Schwarzchild Radius of the Universe
Is the “far” universe expanding more quickly?Does the math work out for there being enough time for the formation of the heavier elements and their distribution as seen in today's universe?How is the universe expanding?What would happen in the final days of the universe?How much of the universe is observable at visible wavelengths?What's the point of looking at distances beyond $13,7$ billion light years?How long was the universe radiation dominated?physical meaning of dark matter virial radiusWhat happens in the event that the cooling radius is shorter than the virial radius of a Cold Dark Matter Halo?The Cosmic Microwave Background Paradox
$begingroup$
According to the Wiki on the Rs, the Rs of the observable universe is 13.7BLY.
https://en.wikipedia.org/wiki/Schwarzschild_radius
(The observable universe's mass has a Schwarzschild radius of approximately 13.7 billion light-years.[7][8])
The reference for this statement is:
https://arxiv.org/abs/1008.0933 and the Encyclopedia of Distances
Can someone please explain this to me... Is this simply because to get into the non-observable portion of the universe, you have to go faster than the speed of light?
astronomy
$endgroup$
add a comment |
$begingroup$
According to the Wiki on the Rs, the Rs of the observable universe is 13.7BLY.
https://en.wikipedia.org/wiki/Schwarzschild_radius
(The observable universe's mass has a Schwarzschild radius of approximately 13.7 billion light-years.[7][8])
The reference for this statement is:
https://arxiv.org/abs/1008.0933 and the Encyclopedia of Distances
Can someone please explain this to me... Is this simply because to get into the non-observable portion of the universe, you have to go faster than the speed of light?
astronomy
$endgroup$
add a comment |
$begingroup$
According to the Wiki on the Rs, the Rs of the observable universe is 13.7BLY.
https://en.wikipedia.org/wiki/Schwarzschild_radius
(The observable universe's mass has a Schwarzschild radius of approximately 13.7 billion light-years.[7][8])
The reference for this statement is:
https://arxiv.org/abs/1008.0933 and the Encyclopedia of Distances
Can someone please explain this to me... Is this simply because to get into the non-observable portion of the universe, you have to go faster than the speed of light?
astronomy
$endgroup$
According to the Wiki on the Rs, the Rs of the observable universe is 13.7BLY.
https://en.wikipedia.org/wiki/Schwarzschild_radius
(The observable universe's mass has a Schwarzschild radius of approximately 13.7 billion light-years.[7][8])
The reference for this statement is:
https://arxiv.org/abs/1008.0933 and the Encyclopedia of Distances
Can someone please explain this to me... Is this simply because to get into the non-observable portion of the universe, you have to go faster than the speed of light?
astronomy
astronomy
edited 3 hours ago
Rick
asked 8 hours ago
RickRick
620315
620315
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
In this paper, the author begins by defining the radius of the observable universe as the radius of the Hubble sphere $r_HS=fraccH_0$, where $H_0$ is the Hubble constant. He then assumes that the universe is a homogeneous and isotropic collection of matter with density $rhoapprox rho_c$, where $rho_c=frac3H^28pi G$ is the critical density of the universe at which the curvature of space is zero.
Since he assumed that the universe is homogeneous and isotropic, the author uses the classical definition of density $rho=frac3M4pi r_HS^3$, where $M$ is the total mass of the observable universe, and with a bit of algebraic manipulation comes up with $r_HS=frac2GMc^2$. The author then asserts that $r_HS$ is the Schwarzschild radius of the universe, because what he came up with looks like the formula for a Schwarzschild radius.
This is where the big problem is: the conditions that the author assumed in the beginning are not compatible with the conditions that admit the definition of a Schwarzschild radius. The Schwarzschild solution of the Einstein field equations requires that all of the mass of the universe is concentrated in a physical singularity at $r=0$, and the rest is vacuum. The author assumes essentially the exact opposite: that the mass of the universe is as spread out as possible, so that none of it is concentrated anywhere, there is no vacuum, and the universe has uniform density. As such, calling this a Schwarzschild radius doesn't really make sense, as it has nothing to do with the Schwarzschild solution besides sharing a superficial similarity in how we express their definitions. Just because he calls it a Schwarzschild radius doesn't mean that it is one.
The moral of the story: though finding similar expressions in different contexts can often be a useful tool to guide intuition, it doesn't actually prove any connection, and isn't a substitute for an actual proof.
$endgroup$
$begingroup$
probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
$endgroup$
– Paul Young
7 hours ago
$begingroup$
It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
$endgroup$
– Rick
3 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471160%2fschwarzchild-radius-of-the-universe%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In this paper, the author begins by defining the radius of the observable universe as the radius of the Hubble sphere $r_HS=fraccH_0$, where $H_0$ is the Hubble constant. He then assumes that the universe is a homogeneous and isotropic collection of matter with density $rhoapprox rho_c$, where $rho_c=frac3H^28pi G$ is the critical density of the universe at which the curvature of space is zero.
Since he assumed that the universe is homogeneous and isotropic, the author uses the classical definition of density $rho=frac3M4pi r_HS^3$, where $M$ is the total mass of the observable universe, and with a bit of algebraic manipulation comes up with $r_HS=frac2GMc^2$. The author then asserts that $r_HS$ is the Schwarzschild radius of the universe, because what he came up with looks like the formula for a Schwarzschild radius.
This is where the big problem is: the conditions that the author assumed in the beginning are not compatible with the conditions that admit the definition of a Schwarzschild radius. The Schwarzschild solution of the Einstein field equations requires that all of the mass of the universe is concentrated in a physical singularity at $r=0$, and the rest is vacuum. The author assumes essentially the exact opposite: that the mass of the universe is as spread out as possible, so that none of it is concentrated anywhere, there is no vacuum, and the universe has uniform density. As such, calling this a Schwarzschild radius doesn't really make sense, as it has nothing to do with the Schwarzschild solution besides sharing a superficial similarity in how we express their definitions. Just because he calls it a Schwarzschild radius doesn't mean that it is one.
The moral of the story: though finding similar expressions in different contexts can often be a useful tool to guide intuition, it doesn't actually prove any connection, and isn't a substitute for an actual proof.
$endgroup$
$begingroup$
probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
$endgroup$
– Paul Young
7 hours ago
$begingroup$
It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
$endgroup$
– Rick
3 hours ago
add a comment |
$begingroup$
In this paper, the author begins by defining the radius of the observable universe as the radius of the Hubble sphere $r_HS=fraccH_0$, where $H_0$ is the Hubble constant. He then assumes that the universe is a homogeneous and isotropic collection of matter with density $rhoapprox rho_c$, where $rho_c=frac3H^28pi G$ is the critical density of the universe at which the curvature of space is zero.
Since he assumed that the universe is homogeneous and isotropic, the author uses the classical definition of density $rho=frac3M4pi r_HS^3$, where $M$ is the total mass of the observable universe, and with a bit of algebraic manipulation comes up with $r_HS=frac2GMc^2$. The author then asserts that $r_HS$ is the Schwarzschild radius of the universe, because what he came up with looks like the formula for a Schwarzschild radius.
This is where the big problem is: the conditions that the author assumed in the beginning are not compatible with the conditions that admit the definition of a Schwarzschild radius. The Schwarzschild solution of the Einstein field equations requires that all of the mass of the universe is concentrated in a physical singularity at $r=0$, and the rest is vacuum. The author assumes essentially the exact opposite: that the mass of the universe is as spread out as possible, so that none of it is concentrated anywhere, there is no vacuum, and the universe has uniform density. As such, calling this a Schwarzschild radius doesn't really make sense, as it has nothing to do with the Schwarzschild solution besides sharing a superficial similarity in how we express their definitions. Just because he calls it a Schwarzschild radius doesn't mean that it is one.
The moral of the story: though finding similar expressions in different contexts can often be a useful tool to guide intuition, it doesn't actually prove any connection, and isn't a substitute for an actual proof.
$endgroup$
$begingroup$
probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
$endgroup$
– Paul Young
7 hours ago
$begingroup$
It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
$endgroup$
– Rick
3 hours ago
add a comment |
$begingroup$
In this paper, the author begins by defining the radius of the observable universe as the radius of the Hubble sphere $r_HS=fraccH_0$, where $H_0$ is the Hubble constant. He then assumes that the universe is a homogeneous and isotropic collection of matter with density $rhoapprox rho_c$, where $rho_c=frac3H^28pi G$ is the critical density of the universe at which the curvature of space is zero.
Since he assumed that the universe is homogeneous and isotropic, the author uses the classical definition of density $rho=frac3M4pi r_HS^3$, where $M$ is the total mass of the observable universe, and with a bit of algebraic manipulation comes up with $r_HS=frac2GMc^2$. The author then asserts that $r_HS$ is the Schwarzschild radius of the universe, because what he came up with looks like the formula for a Schwarzschild radius.
This is where the big problem is: the conditions that the author assumed in the beginning are not compatible with the conditions that admit the definition of a Schwarzschild radius. The Schwarzschild solution of the Einstein field equations requires that all of the mass of the universe is concentrated in a physical singularity at $r=0$, and the rest is vacuum. The author assumes essentially the exact opposite: that the mass of the universe is as spread out as possible, so that none of it is concentrated anywhere, there is no vacuum, and the universe has uniform density. As such, calling this a Schwarzschild radius doesn't really make sense, as it has nothing to do with the Schwarzschild solution besides sharing a superficial similarity in how we express their definitions. Just because he calls it a Schwarzschild radius doesn't mean that it is one.
The moral of the story: though finding similar expressions in different contexts can often be a useful tool to guide intuition, it doesn't actually prove any connection, and isn't a substitute for an actual proof.
$endgroup$
In this paper, the author begins by defining the radius of the observable universe as the radius of the Hubble sphere $r_HS=fraccH_0$, where $H_0$ is the Hubble constant. He then assumes that the universe is a homogeneous and isotropic collection of matter with density $rhoapprox rho_c$, where $rho_c=frac3H^28pi G$ is the critical density of the universe at which the curvature of space is zero.
Since he assumed that the universe is homogeneous and isotropic, the author uses the classical definition of density $rho=frac3M4pi r_HS^3$, where $M$ is the total mass of the observable universe, and with a bit of algebraic manipulation comes up with $r_HS=frac2GMc^2$. The author then asserts that $r_HS$ is the Schwarzschild radius of the universe, because what he came up with looks like the formula for a Schwarzschild radius.
This is where the big problem is: the conditions that the author assumed in the beginning are not compatible with the conditions that admit the definition of a Schwarzschild radius. The Schwarzschild solution of the Einstein field equations requires that all of the mass of the universe is concentrated in a physical singularity at $r=0$, and the rest is vacuum. The author assumes essentially the exact opposite: that the mass of the universe is as spread out as possible, so that none of it is concentrated anywhere, there is no vacuum, and the universe has uniform density. As such, calling this a Schwarzschild radius doesn't really make sense, as it has nothing to do with the Schwarzschild solution besides sharing a superficial similarity in how we express their definitions. Just because he calls it a Schwarzschild radius doesn't mean that it is one.
The moral of the story: though finding similar expressions in different contexts can often be a useful tool to guide intuition, it doesn't actually prove any connection, and isn't a substitute for an actual proof.
answered 7 hours ago
probably_someoneprobably_someone
18.8k12960
18.8k12960
$begingroup$
probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
$endgroup$
– Paul Young
7 hours ago
$begingroup$
It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
$endgroup$
– Rick
3 hours ago
add a comment |
$begingroup$
probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
$endgroup$
– Paul Young
7 hours ago
$begingroup$
It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
$endgroup$
– Rick
3 hours ago
$begingroup$
probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
$endgroup$
– Paul Young
7 hours ago
$begingroup$
probably_someone is still being kind ... the paper's author does not seem to understand even the basics of Einstein's formulation of general relativity ... the OP should just ignore this paper
$endgroup$
– Paul Young
7 hours ago
$begingroup$
It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
$endgroup$
– Rick
3 hours ago
$begingroup$
It did not make any sense to me either which is why I posted the question. Thanks for the confirmation...
$endgroup$
– Rick
3 hours ago
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471160%2fschwarzchild-radius-of-the-universe%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown