Proof involving the spectral radius and the Jordan canonical form Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Spectral radius of the Volterra operatorExample that the Jordan canonical form is not “robust.”The unit vector in the direction of uWhat is the purpose of Jordan Canonical Form?Confusion between spectral radius of matrix and spectral radius of the operatorComputing the Jordan Form of a MatrixSpectral radius of perturbed bipartite graphsA proof involving invertible $ntimes n$ matricesProof of Gelfand's formula without using $rho(A) < 1$ iff $lim A^n = 0$Computing Canonical Jordan Form over a field $mathbbQ$

The logistics of corpse disposal

Is a manifold-with-boundary with given interior and non-empty boundary essentially unique?

How can players work together to take actions that are otherwise impossible?

How widely used is the term Treppenwitz? Is it something that most Germans know?

Did Xerox really develop the first LAN?

I need to find the potential function of a vector field.

If 'B is more likely given A', then 'A is more likely given B'

When to stop saving and start investing?

How much radiation do nuclear physics experiments expose researchers to nowadays?

What do you call a plan that's an alternative plan in case your initial plan fails?

What makes black pepper strong or mild?

Is there a concise way to say "all of the X, one of each"?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

Why was the term "discrete" used in discrete logarithm?

Models of set theory where not every set can be linearly ordered

Is the address of a local variable a constexpr?

If a contract sometimes uses the wrong name, is it still valid?

How discoverable are IPv6 addresses and AAAA names by potential attackers?

How to bypass password on Windows XP account?

ListPlot join points by nearest neighbor rather than order

Letter Boxed validator

Is it true that "carbohydrates are of no use for the basal metabolic need"?

What causes the vertical darker bands in my photo?

What is this single-engine low-wing propeller plane?



Proof involving the spectral radius and the Jordan canonical form



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Spectral radius of the Volterra operatorExample that the Jordan canonical form is not “robust.”The unit vector in the direction of uWhat is the purpose of Jordan Canonical Form?Confusion between spectral radius of matrix and spectral radius of the operatorComputing the Jordan Form of a MatrixSpectral radius of perturbed bipartite graphsA proof involving invertible $ntimes n$ matricesProof of Gelfand's formula without using $rho(A) < 1$ iff $lim A^n = 0$Computing Canonical Jordan Form over a field $mathbbQ$










2












$begingroup$



Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



Hint: Use the Jordan canonical form.




I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










share|cite|improve this question











$endgroup$
















    2












    $begingroup$



    Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



    Hint: Use the Jordan canonical form.




    I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$



      Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



      Hint: Use the Jordan canonical form.




      I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










      share|cite|improve this question











      $endgroup$





      Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



      Hint: Use the Jordan canonical form.




      I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.







      linear-algebra matrices jordan-normal-form spectral-radius






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 4 mins ago









      Rodrigo de Azevedo

      13.2k41961




      13.2k41961










      asked 1 hour ago









      mXdXmXdX

      1068




      1068




















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            Hint



            $$A=PJP^-1 \
            J=beginbmatrix
            lambda_1 & * & 0 & 0 & 0 & ... & 0 \
            0& lambda_2 & * & 0 & 0 & ... & 0 \
            ...&...&...&...&....&....&....\
            0 & 0 & 0 & 0&0&...&lambda_n \
            endbmatrix$$

            where each $*$ is either $0$ or $1$.



            Prove by induction that
            $$J^m=beginbmatrix
            lambda_1^m & star & star & star & star & ... & star \
            0& lambda_2^m & star & star & star & ... & star \
            ...&...&...&...&....&....&....\
            0 & 0 & 0 & 0&0&...&lambda_n^m \
            endbmatrix$$

            where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
            with the $m$^th powers of the eigenvalues on the diagonal.



            Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
              $endgroup$
              – mXdX
              49 mins ago










            • $begingroup$
              @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
              $endgroup$
              – N. S.
              44 mins ago










            • $begingroup$
              I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
              $endgroup$
              – mXdX
              38 mins ago











            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189376%2fproof-involving-the-spectral-radius-and-the-jordan-canonical-form%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






            share|cite|improve this answer









            $endgroup$

















              5












              $begingroup$

              You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






              share|cite|improve this answer









              $endgroup$















                5












                5








                5





                $begingroup$

                You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






                share|cite|improve this answer









                $endgroup$



                You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 55 mins ago









                Robert IsraelRobert Israel

                332k23221478




                332k23221478





















                    2












                    $begingroup$

                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      49 mins ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      44 mins ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      38 mins ago















                    2












                    $begingroup$

                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      49 mins ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      44 mins ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      38 mins ago













                    2












                    2








                    2





                    $begingroup$

                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$



                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 1 hour ago









                    N. S.N. S.

                    105k7115210




                    105k7115210











                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      49 mins ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      44 mins ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      38 mins ago
















                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      49 mins ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      44 mins ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      38 mins ago















                    $begingroup$
                    So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                    $endgroup$
                    – mXdX
                    49 mins ago




                    $begingroup$
                    So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                    $endgroup$
                    – mXdX
                    49 mins ago












                    $begingroup$
                    @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                    $endgroup$
                    – N. S.
                    44 mins ago




                    $begingroup$
                    @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                    $endgroup$
                    – N. S.
                    44 mins ago












                    $begingroup$
                    I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                    $endgroup$
                    – mXdX
                    38 mins ago




                    $begingroup$
                    I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                    $endgroup$
                    – mXdX
                    38 mins ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189376%2fproof-involving-the-spectral-radius-and-the-jordan-canonical-form%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    یوتیوب محتویات پیشینه[ویرایش] فناوری‌های ویدئویی[ویرایش] شوخی‌های آوریل[ویرایش] سانسور و فیلترینگ[ویرایش] آمار و ارقامی از یوتیوب[ویرایش] تأثیر اجتماعی[ویرایش] سیاست اجتماعی[ویرایش] نمودارها[ویرایش] یادداشت‌ها[ویرایش] پانویس[ویرایش] پیوند به بیرون[ویرایش] منوی ناوبریبررسی شده‌استYouTube.com[بروزرسانی]"Youtube.com Site Info""زبان‌های یوتیوب""Surprise! There's a third YouTube co-founder"سایت یوتیوب برای چندمین بار در ایران فیلتر شدنسخهٔ اصلیسالار کمانگر جوان آمریکایی ایرانی الاصل مدیر سایت یوتیوب شدنسخهٔ اصلیVideo websites pop up, invite postingsthe originalthe originalYouTube: Overnight success has sparked a backlashthe original"Me at the zoo"YouTube serves up 100 million videos a day onlinethe originalcomScore Releases May 2010 U.S. Online Video Rankingsthe originalYouTube hits 4 billion daily video viewsthe originalYouTube users uploading two days of video every minutethe originalEric Schmidt, Princeton Colloquium on Public & Int'l Affairsthe original«Streaming Dreams»نسخهٔ اصلیAlexa Traffic Rank for YouTube (three month average)the originalHelp! YouTube is killing my business!the originalUtube sues YouTubethe originalGoogle closes $A2b YouTube dealthe originalFlash moves on to smart phonesthe originalYouTube HTML5 Video Playerنسخهٔ اصلیYouTube HTML5 Video Playerthe originalGoogle tries freeing Web video with WebMthe originalVideo length for uploadingthe originalYouTube caps video lengths to reduce infringementthe originalAccount Types: Longer videosthe originalYouTube bumps video limit to 15 minutesthe originalUploading large files and resumable uploadingthe originalVideo Formats: File formatsthe originalGetting Started: File formatsthe originalThe quest for a new video codec in Flash 8the originalAdobe Flash Video File Format Specification Version 10.1the originalYouTube Mobile goes livethe originalYouTube videos go HD with a simple hackthe originalYouTube now supports 4k-resolution videosthe originalYouTube to get high-def 1080p playerthe original«Approximate YouTube Bitrates»نسخهٔ اصلی«Bigger and Better: Encoding for YouTube 720p HD»نسخهٔ اصلی«YouTube's 1080p – Failure Depends on How You Look At It»نسخهٔ اصلیYouTube in 3Dthe originalYouTube in 3D?the originalYouTube 3D Videosthe originalYouTube adds a dimension, 3D goggles not includedthe originalYouTube Adds Stereoscopic 3D Video Support (And 3D Vision Support, Too)the original«Sharing YouTube Videos»نسخهٔ اصلی«Downloading videos from YouTube is not supported, except for one instance when it is permitted.»نسخهٔ اصلی«Terms of Use, 5.B»نسخهٔ اصلی«Some YouTube videos get download option»نسخهٔ اصلی«YouTube looks out for content owners, disables video ripping»«Downloading videos from YouTube is not supported, except for one instance when it is permitted.»نسخهٔ اصلی«YouTube Hopes To Boost Revenue With Video Downloads»نسخهٔ اصلی«YouTube Mobile»نسخهٔ اصلی«YouTube Live on Apple TV Today; Coming to iPhone on June 29»نسخهٔ اصلی«Goodbye Flash: YouTube mobile goes HTML5 on iPhone and Android»نسخهٔ اصلی«YouTube Mobile Goes HTML5, Video Quality Beats Native Apps Hands Down»نسخهٔ اصلی«TiVo Getting YouTube Streaming Today»نسخهٔ اصلی«YouTube video comes to Wii and PlayStation 3 game consoles»نسخهٔ اصلی«Coming Up Next... YouTube on Your TV»نسخهٔ اصلی«Experience YouTube XL on the Big Screen»نسخهٔ اصلی«Xbox Live Getting Live TV, YouTube & Bing Voice Search»نسخهٔ اصلی«YouTube content locations»نسخهٔ اصلی«April fools: YouTube turns the world up-side-down»نسخهٔ اصلی«YouTube goes back to 1911 for April Fools' Day»نسخهٔ اصلی«Simon Cowell's bromance, the self-driving Nascar and Hungry Hippos for iPad... the best April Fools' gags»نسخهٔ اصلی"YouTube Announces It Will Shut Down""YouTube Adds Darude 'Sandstorm' Button To Its Videos For April Fools' Day"«Censorship fears rise as Iran blocks access to top websites»نسخهٔ اصلی«China 'blocks YouTube video site'»نسخهٔ اصلی«YouTube shut down in Morocco»نسخهٔ اصلی«Thailand blocks access to YouTube»نسخهٔ اصلی«Ban on YouTube lifted after deal»نسخهٔ اصلی«Google's Gatekeepers»نسخهٔ اصلی«Turkey goes into battle with Google»نسخهٔ اصلی«Turkey lifts two-year ban on YouTube»نسخهٔ اصلیسانسور در ترکیه به یوتیوب رسیدلغو فیلترینگ یوتیوب در ترکیه«Pakistan blocks YouTube website»نسخهٔ اصلی«Pakistan lifts the ban on YouTube»نسخهٔ اصلی«Pakistan blocks access to YouTube in internet crackdown»نسخهٔ اصلی«Watchdog urges Libya to stop blocking websites»نسخهٔ اصلی«YouTube»نسخهٔ اصلی«Due to abuses of religion, customs Emirates, YouTube is blocked in the UAE»نسخهٔ اصلی«Google Conquered The Web - An Ultimate Winner»نسخهٔ اصلی«100 million videos are viewed daily on YouTube»نسخهٔ اصلی«Harry and Charlie Davies-Carr: Web gets taste for biting baby»نسخهٔ اصلی«Meet YouTube's 224 million girl, Natalie Tran»نسخهٔ اصلی«YouTube to Double Down on Its 'Channel' Experiment»نسخهٔ اصلی«13 Some Media Companies Choose to Profit From Pirated YouTube Clips»نسخهٔ اصلی«Irate HK man unlikely Web hero»نسخهٔ اصلی«Web Guitar Wizard Revealed at Last»نسخهٔ اصلی«Charlie bit my finger – again!»نسخهٔ اصلی«Lowered Expectations: Web Redefines 'Quality'»نسخهٔ اصلی«YouTube's 50 Greatest Viral Videos»نسخهٔ اصلیYouTube Community Guidelinesthe original«Why did my YouTube account get closed down?»نسخهٔ اصلی«Why do I have a sanction on my account?»نسخهٔ اصلی«Is YouTube's three-strike rule fair to users?»نسخهٔ اصلی«Viacom will sue YouTube for $1bn»نسخهٔ اصلی«Mediaset Files EUR500 Million Suit Vs Google's YouTube»نسخهٔ اصلی«Premier League to take action against YouTube»نسخهٔ اصلی«YouTube law fight 'threatens net'»نسخهٔ اصلی«Google must divulge YouTube log»نسخهٔ اصلی«Google Told to Turn Over User Data of YouTube»نسخهٔ اصلی«US judge tosses out Viacom copyright suit against YouTube»نسخهٔ اصلی«Google and Viacom: YouTube copyright lawsuit back on»نسخهٔ اصلی«Woman can sue over YouTube clip de-posting»نسخهٔ اصلی«YouTube loses court battle over music clips»نسخهٔ اصلیYouTube to Test Software To Ease Licensing Fightsthe original«Press Statistics»نسخهٔ اصلی«Testing YouTube's Audio Content ID System»نسخهٔ اصلی«Content ID disputes»نسخهٔ اصلیYouTube Community Guidelinesthe originalYouTube criticized in Germany over anti-Semitic Nazi videosthe originalFury as YouTube carries sick Hillsboro video insultthe originalYouTube attacked by MPs over sex and violence footagethe originalAl-Awlaki's YouTube Videos Targeted by Rep. Weinerthe originalYouTube Withdraws Cleric's Videosthe originalYouTube is letting users decide on terrorism-related videosthe original«Time's Person of the Year: You»نسخهٔ اصلی«Our top 10 funniest YouTube comments – what are yours?»نسخهٔ اصلی«YouTube's worst comments blocked by filter»نسخهٔ اصلی«Site Info YouTube»نسخهٔ اصلیوبگاه YouTubeوبگاه موبایل YouTubeوووووو

                    Magento 2 - Auto login with specific URL Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Customer can't login - Page refreshes but nothing happensCustom Login page redirectURL to login with redirect URL after completionCustomer login is case sensitiveLogin with phone number or email address - Magento 1.9Magento 2: Set Customer Account Confirmation StatusCustomer auto connect from URLHow to call customer login form in the custom module action magento 2?Change of customer login error message magento2Referrer URL in modal login form

                    Rest API with Magento using PHP with example. Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How to update product using magento client library for PHP?Oauth Error while extending Magento Rest APINot showing my custom api in wsdl(url) and web service list?Using Magento API(REST) via IXMLHTTPRequest COM ObjectHow to login in Magento website using REST APIREST api call for Guest userMagento API calling using HTML and javascriptUse API rest media management by storeView code (admin)Magento REST API Example ErrorsHow to log all rest api calls in magento2?How to update product using magento client library for PHP?