Why does this iterative way of solving of equation work? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Solving a Recurrence Relation/Equation, is there more than 1 way to solve this?Iterative method for matrix differential equationHow does this simplification work?Solution of $x^2(y')^2-2(xy-4)y'+y^2=0$For which values does this series converge?Why does changing variables work?Why does this method for solving recurrence relations work in some cases and not in others?What's wrong in this method of solving a difference equation?Solving a non-linear recurrence equationWhy variation of constant work to solve first order ODE?

How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?

What can I do if neighbor is blocking my solar panels intentionally?

How do I add random spotting to the same face in cycles?

How to copy the contents of all files with a certain name into a new file?

Didn't get enough time to take a Coding Test - what to do now?

First use of “packing” as in carrying a gun

How to delete random line from file using Unix command?

When did F become S in typeography, and why?

Semisimplicity of the category of coherent sheaves?

What is special about square numbers here?

Simulation of a banking system with an Account class in C++

How can I define good in a religion that claims no moral authority?

How is simplicity better than precision and clarity in prose?

Did the new image of black hole confirm the general theory of relativity?

Is there a writing software that you can sort scenes like slides in PowerPoint?

Is this wall load bearing? Blueprints and photos attached

Derivation tree not rendering

How many people can fit inside Mordenkainen's Magnificent Mansion?

Do working physicists consider Newtonian mechanics to be "falsified"?

What information about me do stores get via my credit card?

What LEGO pieces have "real-world" functionality?

In horse breeding, what is the female equivalent of putting a horse out "to stud"?

Would an alien lifeform be able to achieve space travel if lacking in vision?

How are presidential pardons supposed to be used?



Why does this iterative way of solving of equation work?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Solving a Recurrence Relation/Equation, is there more than 1 way to solve this?Iterative method for matrix differential equationHow does this simplification work?Solution of $x^2(y')^2-2(xy-4)y'+y^2=0$For which values does this series converge?Why does changing variables work?Why does this method for solving recurrence relations work in some cases and not in others?What's wrong in this method of solving a difference equation?Solving a non-linear recurrence equationWhy variation of constant work to solve first order ODE?










1












$begingroup$


I was solving some semiconductor physics problem and in order to get the temperature I got this nasty equation:



$$ T = dfrac7020dfrac32ln(T)+12.$$



I was thougt that I can solve this kind of equation simply by guessing solution for $T$ and then substituting that answer back into equation and then again substituting answer back into equation and so on until I am satisfied by precision of result. Somehow this method works.



Concretly for my example, my first guess was $T=1$ and I got this sequance of numbers $(585.0, 325.6419704169386, 339.4797907885183, 338.4580701961562, 338.53186591337385,338.52652733834424, ...)$ and they really seem to solve equation better and better.



Questions.



1) What is intuitive way to see why this method works?



2) How can I show rigoursly that this method actualy converges to solution of equation?



3) Obvious generalization for which the method will works seems to be:
$$ x = dfracabln(x)+c. $$ For which $a,b,c$ will this method work? Is this equation special case of some natural generalization of this equation? What are some similar equations which I can solve via this described method?



4) When will sequance of numbers in iteratiton process be finite to exacly solve equatiton? Does that case exist? Is solution to equation:
$$ x = dfracabln(x)+c $$
always (for every $a,b,c$) irational? Is it transcendental? If not, for which $a,b,c$ will that be the case?



Thank you for any help.










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    Looks like the solution happens to be an attractive fixed point.
    $endgroup$
    – Brevan Ellefsen
    2 hours ago







  • 4




    $begingroup$
    It's called fixed point iteration; it is one of the classical topics of numerical analysis. When the method works there is some geometric intuition in terms of a "web plot"; the geometric intuition shown there essentially captures the main idea of the proof, which is called the contraction mapping principle or the Banach fixed point theorem. You can use the statement of the fixed point theorem to answer your question 3, although resolving the dependence on the initial guess is usually intractable in practice. Your question 4 is also usually intractable to answer in practice.
    $endgroup$
    – Ian
    2 hours ago







  • 1




    $begingroup$
    There is a proof for existence and uniqueness of fixed points for contraction mappings on certain domains using iteration. I'll find you some links to previous Questions here.
    $endgroup$
    – hardmath
    2 hours ago















1












$begingroup$


I was solving some semiconductor physics problem and in order to get the temperature I got this nasty equation:



$$ T = dfrac7020dfrac32ln(T)+12.$$



I was thougt that I can solve this kind of equation simply by guessing solution for $T$ and then substituting that answer back into equation and then again substituting answer back into equation and so on until I am satisfied by precision of result. Somehow this method works.



Concretly for my example, my first guess was $T=1$ and I got this sequance of numbers $(585.0, 325.6419704169386, 339.4797907885183, 338.4580701961562, 338.53186591337385,338.52652733834424, ...)$ and they really seem to solve equation better and better.



Questions.



1) What is intuitive way to see why this method works?



2) How can I show rigoursly that this method actualy converges to solution of equation?



3) Obvious generalization for which the method will works seems to be:
$$ x = dfracabln(x)+c. $$ For which $a,b,c$ will this method work? Is this equation special case of some natural generalization of this equation? What are some similar equations which I can solve via this described method?



4) When will sequance of numbers in iteratiton process be finite to exacly solve equatiton? Does that case exist? Is solution to equation:
$$ x = dfracabln(x)+c $$
always (for every $a,b,c$) irational? Is it transcendental? If not, for which $a,b,c$ will that be the case?



Thank you for any help.










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    Looks like the solution happens to be an attractive fixed point.
    $endgroup$
    – Brevan Ellefsen
    2 hours ago







  • 4




    $begingroup$
    It's called fixed point iteration; it is one of the classical topics of numerical analysis. When the method works there is some geometric intuition in terms of a "web plot"; the geometric intuition shown there essentially captures the main idea of the proof, which is called the contraction mapping principle or the Banach fixed point theorem. You can use the statement of the fixed point theorem to answer your question 3, although resolving the dependence on the initial guess is usually intractable in practice. Your question 4 is also usually intractable to answer in practice.
    $endgroup$
    – Ian
    2 hours ago







  • 1




    $begingroup$
    There is a proof for existence and uniqueness of fixed points for contraction mappings on certain domains using iteration. I'll find you some links to previous Questions here.
    $endgroup$
    – hardmath
    2 hours ago













1












1








1





$begingroup$


I was solving some semiconductor physics problem and in order to get the temperature I got this nasty equation:



$$ T = dfrac7020dfrac32ln(T)+12.$$



I was thougt that I can solve this kind of equation simply by guessing solution for $T$ and then substituting that answer back into equation and then again substituting answer back into equation and so on until I am satisfied by precision of result. Somehow this method works.



Concretly for my example, my first guess was $T=1$ and I got this sequance of numbers $(585.0, 325.6419704169386, 339.4797907885183, 338.4580701961562, 338.53186591337385,338.52652733834424, ...)$ and they really seem to solve equation better and better.



Questions.



1) What is intuitive way to see why this method works?



2) How can I show rigoursly that this method actualy converges to solution of equation?



3) Obvious generalization for which the method will works seems to be:
$$ x = dfracabln(x)+c. $$ For which $a,b,c$ will this method work? Is this equation special case of some natural generalization of this equation? What are some similar equations which I can solve via this described method?



4) When will sequance of numbers in iteratiton process be finite to exacly solve equatiton? Does that case exist? Is solution to equation:
$$ x = dfracabln(x)+c $$
always (for every $a,b,c$) irational? Is it transcendental? If not, for which $a,b,c$ will that be the case?



Thank you for any help.










share|cite|improve this question









$endgroup$




I was solving some semiconductor physics problem and in order to get the temperature I got this nasty equation:



$$ T = dfrac7020dfrac32ln(T)+12.$$



I was thougt that I can solve this kind of equation simply by guessing solution for $T$ and then substituting that answer back into equation and then again substituting answer back into equation and so on until I am satisfied by precision of result. Somehow this method works.



Concretly for my example, my first guess was $T=1$ and I got this sequance of numbers $(585.0, 325.6419704169386, 339.4797907885183, 338.4580701961562, 338.53186591337385,338.52652733834424, ...)$ and they really seem to solve equation better and better.



Questions.



1) What is intuitive way to see why this method works?



2) How can I show rigoursly that this method actualy converges to solution of equation?



3) Obvious generalization for which the method will works seems to be:
$$ x = dfracabln(x)+c. $$ For which $a,b,c$ will this method work? Is this equation special case of some natural generalization of this equation? What are some similar equations which I can solve via this described method?



4) When will sequance of numbers in iteratiton process be finite to exacly solve equatiton? Does that case exist? Is solution to equation:
$$ x = dfracabln(x)+c $$
always (for every $a,b,c$) irational? Is it transcendental? If not, for which $a,b,c$ will that be the case?



Thank you for any help.







real-analysis sequences-and-series recurrence-relations irrational-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









ThomThom

381111




381111







  • 2




    $begingroup$
    Looks like the solution happens to be an attractive fixed point.
    $endgroup$
    – Brevan Ellefsen
    2 hours ago







  • 4




    $begingroup$
    It's called fixed point iteration; it is one of the classical topics of numerical analysis. When the method works there is some geometric intuition in terms of a "web plot"; the geometric intuition shown there essentially captures the main idea of the proof, which is called the contraction mapping principle or the Banach fixed point theorem. You can use the statement of the fixed point theorem to answer your question 3, although resolving the dependence on the initial guess is usually intractable in practice. Your question 4 is also usually intractable to answer in practice.
    $endgroup$
    – Ian
    2 hours ago







  • 1




    $begingroup$
    There is a proof for existence and uniqueness of fixed points for contraction mappings on certain domains using iteration. I'll find you some links to previous Questions here.
    $endgroup$
    – hardmath
    2 hours ago












  • 2




    $begingroup$
    Looks like the solution happens to be an attractive fixed point.
    $endgroup$
    – Brevan Ellefsen
    2 hours ago







  • 4




    $begingroup$
    It's called fixed point iteration; it is one of the classical topics of numerical analysis. When the method works there is some geometric intuition in terms of a "web plot"; the geometric intuition shown there essentially captures the main idea of the proof, which is called the contraction mapping principle or the Banach fixed point theorem. You can use the statement of the fixed point theorem to answer your question 3, although resolving the dependence on the initial guess is usually intractable in practice. Your question 4 is also usually intractable to answer in practice.
    $endgroup$
    – Ian
    2 hours ago







  • 1




    $begingroup$
    There is a proof for existence and uniqueness of fixed points for contraction mappings on certain domains using iteration. I'll find you some links to previous Questions here.
    $endgroup$
    – hardmath
    2 hours ago







2




2




$begingroup$
Looks like the solution happens to be an attractive fixed point.
$endgroup$
– Brevan Ellefsen
2 hours ago





$begingroup$
Looks like the solution happens to be an attractive fixed point.
$endgroup$
– Brevan Ellefsen
2 hours ago





4




4




$begingroup$
It's called fixed point iteration; it is one of the classical topics of numerical analysis. When the method works there is some geometric intuition in terms of a "web plot"; the geometric intuition shown there essentially captures the main idea of the proof, which is called the contraction mapping principle or the Banach fixed point theorem. You can use the statement of the fixed point theorem to answer your question 3, although resolving the dependence on the initial guess is usually intractable in practice. Your question 4 is also usually intractable to answer in practice.
$endgroup$
– Ian
2 hours ago





$begingroup$
It's called fixed point iteration; it is one of the classical topics of numerical analysis. When the method works there is some geometric intuition in terms of a "web plot"; the geometric intuition shown there essentially captures the main idea of the proof, which is called the contraction mapping principle or the Banach fixed point theorem. You can use the statement of the fixed point theorem to answer your question 3, although resolving the dependence on the initial guess is usually intractable in practice. Your question 4 is also usually intractable to answer in practice.
$endgroup$
– Ian
2 hours ago





1




1




$begingroup$
There is a proof for existence and uniqueness of fixed points for contraction mappings on certain domains using iteration. I'll find you some links to previous Questions here.
$endgroup$
– hardmath
2 hours ago




$begingroup$
There is a proof for existence and uniqueness of fixed points for contraction mappings on certain domains using iteration. I'll find you some links to previous Questions here.
$endgroup$
– hardmath
2 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

This method works because you are looking at a discrete dynamical of the form



$$x_n+1 = f(x_n)$$



where $f$ is a contraction. The rigorous proof is the Banach fixed point theorem.






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    The equation $$T=fracab log (T)+c$$ has explicit solution(s) in terms of Lambert function.



    The result is given by
    $$T=fracab, Wleft(fraca be^fraccbright)$$



    In the linked page, you will see the different steps.



    Applied to your case, this will immeditely give
    $$T=frac4680Wleft(4680 e^8right)=338.526887451390053458527935852$$ If you do not access this function, for large values of the argument, use the expansion given in the linked page
    $$W(x)=L_1-L_2+fracL_2L_1+frac(L_2-2) L_22 L_1^2+frac(2 L_2^2-9L_2+6) L_26 L_1^3+ ...$$ with $L_1=log (x)$ and $L_2=log (L_1)$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      That's equation (2.4.4) from Asymptotic Methods in Analysis by N. G. de Bruijn. A most excellent book.
      $endgroup$
      – marty cohen
      19 mins ago










    • $begingroup$
      @martycohen. Thanks for the information ! Fortunately, we can find it in many places. A few years ago, one of my PhD students extended it to very high orders. Cheers :-)
      $endgroup$
      – Claude Leibovici
      2 mins ago


















    0












    $begingroup$

    In general, a fixed point $p$ of a function $f(x)$ is an attractor for the iteration $x_n+1 = f(x_n)$ if $|f'(p)| < 1$. Then, if your initial guess is close enough to the fixed point, the iterations will eventually converge to it.
    If $|f'(p)| > 1$, the fixed point is a repeller, and the only way to converge to the fixed point is to start exactly there (or happen to land there after a finite
    number of iterations).



    You have three parameters $a,b,c$, but there are really just two because you can multiply numerator and denominator by the same constant. So let's suppose $b=1$. As Claude remarked, the fixed point is
    $$ p = fracaW(a e^c)$$
    and this is the only real fixed point if $a,c>0$ (this is easy to see because $f(x)$ is decreasing where it is positive). The curve $f'(p) = -1$ in the $a,c$ plane looks like this:



    enter image description here



    Above the curve, the fixed point is an attractor. In particular that is always true for $a > e$. However, $a=c=1$ is right on the curve, and it's not clear whether the fixed point would be an attractor in that case (it turns out that it isn't, by taking higher derivatives into account). If $(a,c)$ is below the curve, the fixed point is a repeller.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186915%2fwhy-does-this-iterative-way-of-solving-of-equation-work%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      This method works because you are looking at a discrete dynamical of the form



      $$x_n+1 = f(x_n)$$



      where $f$ is a contraction. The rigorous proof is the Banach fixed point theorem.






      share|cite|improve this answer









      $endgroup$

















        2












        $begingroup$

        This method works because you are looking at a discrete dynamical of the form



        $$x_n+1 = f(x_n)$$



        where $f$ is a contraction. The rigorous proof is the Banach fixed point theorem.






        share|cite|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          This method works because you are looking at a discrete dynamical of the form



          $$x_n+1 = f(x_n)$$



          where $f$ is a contraction. The rigorous proof is the Banach fixed point theorem.






          share|cite|improve this answer









          $endgroup$



          This method works because you are looking at a discrete dynamical of the form



          $$x_n+1 = f(x_n)$$



          where $f$ is a contraction. The rigorous proof is the Banach fixed point theorem.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          Tony S.F.Tony S.F.

          3,51421030




          3,51421030





















              1












              $begingroup$

              The equation $$T=fracab log (T)+c$$ has explicit solution(s) in terms of Lambert function.



              The result is given by
              $$T=fracab, Wleft(fraca be^fraccbright)$$



              In the linked page, you will see the different steps.



              Applied to your case, this will immeditely give
              $$T=frac4680Wleft(4680 e^8right)=338.526887451390053458527935852$$ If you do not access this function, for large values of the argument, use the expansion given in the linked page
              $$W(x)=L_1-L_2+fracL_2L_1+frac(L_2-2) L_22 L_1^2+frac(2 L_2^2-9L_2+6) L_26 L_1^3+ ...$$ with $L_1=log (x)$ and $L_2=log (L_1)$






              share|cite|improve this answer









              $endgroup$












              • $begingroup$
                That's equation (2.4.4) from Asymptotic Methods in Analysis by N. G. de Bruijn. A most excellent book.
                $endgroup$
                – marty cohen
                19 mins ago










              • $begingroup$
                @martycohen. Thanks for the information ! Fortunately, we can find it in many places. A few years ago, one of my PhD students extended it to very high orders. Cheers :-)
                $endgroup$
                – Claude Leibovici
                2 mins ago















              1












              $begingroup$

              The equation $$T=fracab log (T)+c$$ has explicit solution(s) in terms of Lambert function.



              The result is given by
              $$T=fracab, Wleft(fraca be^fraccbright)$$



              In the linked page, you will see the different steps.



              Applied to your case, this will immeditely give
              $$T=frac4680Wleft(4680 e^8right)=338.526887451390053458527935852$$ If you do not access this function, for large values of the argument, use the expansion given in the linked page
              $$W(x)=L_1-L_2+fracL_2L_1+frac(L_2-2) L_22 L_1^2+frac(2 L_2^2-9L_2+6) L_26 L_1^3+ ...$$ with $L_1=log (x)$ and $L_2=log (L_1)$






              share|cite|improve this answer









              $endgroup$












              • $begingroup$
                That's equation (2.4.4) from Asymptotic Methods in Analysis by N. G. de Bruijn. A most excellent book.
                $endgroup$
                – marty cohen
                19 mins ago










              • $begingroup$
                @martycohen. Thanks for the information ! Fortunately, we can find it in many places. A few years ago, one of my PhD students extended it to very high orders. Cheers :-)
                $endgroup$
                – Claude Leibovici
                2 mins ago













              1












              1








              1





              $begingroup$

              The equation $$T=fracab log (T)+c$$ has explicit solution(s) in terms of Lambert function.



              The result is given by
              $$T=fracab, Wleft(fraca be^fraccbright)$$



              In the linked page, you will see the different steps.



              Applied to your case, this will immeditely give
              $$T=frac4680Wleft(4680 e^8right)=338.526887451390053458527935852$$ If you do not access this function, for large values of the argument, use the expansion given in the linked page
              $$W(x)=L_1-L_2+fracL_2L_1+frac(L_2-2) L_22 L_1^2+frac(2 L_2^2-9L_2+6) L_26 L_1^3+ ...$$ with $L_1=log (x)$ and $L_2=log (L_1)$






              share|cite|improve this answer









              $endgroup$



              The equation $$T=fracab log (T)+c$$ has explicit solution(s) in terms of Lambert function.



              The result is given by
              $$T=fracab, Wleft(fraca be^fraccbright)$$



              In the linked page, you will see the different steps.



              Applied to your case, this will immeditely give
              $$T=frac4680Wleft(4680 e^8right)=338.526887451390053458527935852$$ If you do not access this function, for large values of the argument, use the expansion given in the linked page
              $$W(x)=L_1-L_2+fracL_2L_1+frac(L_2-2) L_22 L_1^2+frac(2 L_2^2-9L_2+6) L_26 L_1^3+ ...$$ with $L_1=log (x)$ and $L_2=log (L_1)$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 1 hour ago









              Claude LeiboviciClaude Leibovici

              125k1158135




              125k1158135











              • $begingroup$
                That's equation (2.4.4) from Asymptotic Methods in Analysis by N. G. de Bruijn. A most excellent book.
                $endgroup$
                – marty cohen
                19 mins ago










              • $begingroup$
                @martycohen. Thanks for the information ! Fortunately, we can find it in many places. A few years ago, one of my PhD students extended it to very high orders. Cheers :-)
                $endgroup$
                – Claude Leibovici
                2 mins ago
















              • $begingroup$
                That's equation (2.4.4) from Asymptotic Methods in Analysis by N. G. de Bruijn. A most excellent book.
                $endgroup$
                – marty cohen
                19 mins ago










              • $begingroup$
                @martycohen. Thanks for the information ! Fortunately, we can find it in many places. A few years ago, one of my PhD students extended it to very high orders. Cheers :-)
                $endgroup$
                – Claude Leibovici
                2 mins ago















              $begingroup$
              That's equation (2.4.4) from Asymptotic Methods in Analysis by N. G. de Bruijn. A most excellent book.
              $endgroup$
              – marty cohen
              19 mins ago




              $begingroup$
              That's equation (2.4.4) from Asymptotic Methods in Analysis by N. G. de Bruijn. A most excellent book.
              $endgroup$
              – marty cohen
              19 mins ago












              $begingroup$
              @martycohen. Thanks for the information ! Fortunately, we can find it in many places. A few years ago, one of my PhD students extended it to very high orders. Cheers :-)
              $endgroup$
              – Claude Leibovici
              2 mins ago




              $begingroup$
              @martycohen. Thanks for the information ! Fortunately, we can find it in many places. A few years ago, one of my PhD students extended it to very high orders. Cheers :-)
              $endgroup$
              – Claude Leibovici
              2 mins ago











              0












              $begingroup$

              In general, a fixed point $p$ of a function $f(x)$ is an attractor for the iteration $x_n+1 = f(x_n)$ if $|f'(p)| < 1$. Then, if your initial guess is close enough to the fixed point, the iterations will eventually converge to it.
              If $|f'(p)| > 1$, the fixed point is a repeller, and the only way to converge to the fixed point is to start exactly there (or happen to land there after a finite
              number of iterations).



              You have three parameters $a,b,c$, but there are really just two because you can multiply numerator and denominator by the same constant. So let's suppose $b=1$. As Claude remarked, the fixed point is
              $$ p = fracaW(a e^c)$$
              and this is the only real fixed point if $a,c>0$ (this is easy to see because $f(x)$ is decreasing where it is positive). The curve $f'(p) = -1$ in the $a,c$ plane looks like this:



              enter image description here



              Above the curve, the fixed point is an attractor. In particular that is always true for $a > e$. However, $a=c=1$ is right on the curve, and it's not clear whether the fixed point would be an attractor in that case (it turns out that it isn't, by taking higher derivatives into account). If $(a,c)$ is below the curve, the fixed point is a repeller.






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                In general, a fixed point $p$ of a function $f(x)$ is an attractor for the iteration $x_n+1 = f(x_n)$ if $|f'(p)| < 1$. Then, if your initial guess is close enough to the fixed point, the iterations will eventually converge to it.
                If $|f'(p)| > 1$, the fixed point is a repeller, and the only way to converge to the fixed point is to start exactly there (or happen to land there after a finite
                number of iterations).



                You have three parameters $a,b,c$, but there are really just two because you can multiply numerator and denominator by the same constant. So let's suppose $b=1$. As Claude remarked, the fixed point is
                $$ p = fracaW(a e^c)$$
                and this is the only real fixed point if $a,c>0$ (this is easy to see because $f(x)$ is decreasing where it is positive). The curve $f'(p) = -1$ in the $a,c$ plane looks like this:



                enter image description here



                Above the curve, the fixed point is an attractor. In particular that is always true for $a > e$. However, $a=c=1$ is right on the curve, and it's not clear whether the fixed point would be an attractor in that case (it turns out that it isn't, by taking higher derivatives into account). If $(a,c)$ is below the curve, the fixed point is a repeller.






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  In general, a fixed point $p$ of a function $f(x)$ is an attractor for the iteration $x_n+1 = f(x_n)$ if $|f'(p)| < 1$. Then, if your initial guess is close enough to the fixed point, the iterations will eventually converge to it.
                  If $|f'(p)| > 1$, the fixed point is a repeller, and the only way to converge to the fixed point is to start exactly there (or happen to land there after a finite
                  number of iterations).



                  You have three parameters $a,b,c$, but there are really just two because you can multiply numerator and denominator by the same constant. So let's suppose $b=1$. As Claude remarked, the fixed point is
                  $$ p = fracaW(a e^c)$$
                  and this is the only real fixed point if $a,c>0$ (this is easy to see because $f(x)$ is decreasing where it is positive). The curve $f'(p) = -1$ in the $a,c$ plane looks like this:



                  enter image description here



                  Above the curve, the fixed point is an attractor. In particular that is always true for $a > e$. However, $a=c=1$ is right on the curve, and it's not clear whether the fixed point would be an attractor in that case (it turns out that it isn't, by taking higher derivatives into account). If $(a,c)$ is below the curve, the fixed point is a repeller.






                  share|cite|improve this answer









                  $endgroup$



                  In general, a fixed point $p$ of a function $f(x)$ is an attractor for the iteration $x_n+1 = f(x_n)$ if $|f'(p)| < 1$. Then, if your initial guess is close enough to the fixed point, the iterations will eventually converge to it.
                  If $|f'(p)| > 1$, the fixed point is a repeller, and the only way to converge to the fixed point is to start exactly there (or happen to land there after a finite
                  number of iterations).



                  You have three parameters $a,b,c$, but there are really just two because you can multiply numerator and denominator by the same constant. So let's suppose $b=1$. As Claude remarked, the fixed point is
                  $$ p = fracaW(a e^c)$$
                  and this is the only real fixed point if $a,c>0$ (this is easy to see because $f(x)$ is decreasing where it is positive). The curve $f'(p) = -1$ in the $a,c$ plane looks like this:



                  enter image description here



                  Above the curve, the fixed point is an attractor. In particular that is always true for $a > e$. However, $a=c=1$ is right on the curve, and it's not clear whether the fixed point would be an attractor in that case (it turns out that it isn't, by taking higher derivatives into account). If $(a,c)$ is below the curve, the fixed point is a repeller.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 1 hour ago









                  Robert IsraelRobert Israel

                  331k23221477




                  331k23221477



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186915%2fwhy-does-this-iterative-way-of-solving-of-equation-work%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      کانن (شرکت) محتویات تاریخچه[ویرایش] بخشی از تولیدات موفق این شرکت[ویرایش] در رده APS-C[ویرایش] گزارش محیط زیست[ویرایش] رده‌بندی محصولات[ویرایش] منابع[ویرایش] پانویس[ویرایش] پیوند به بیرون[ویرایش] منوی ناوبریwww.canon.comموزه آنلاین دوربین‌های کانننمودار تاریخچه سهام کاننوبگاه رسمی شرکت کاننوووووIDC Worldwide Hardcopy 2013

                      Rest API with Magento using PHP with example. Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How to update product using magento client library for PHP?Oauth Error while extending Magento Rest APINot showing my custom api in wsdl(url) and web service list?Using Magento API(REST) via IXMLHTTPRequest COM ObjectHow to login in Magento website using REST APIREST api call for Guest userMagento API calling using HTML and javascriptUse API rest media management by storeView code (admin)Magento REST API Example ErrorsHow to log all rest api calls in magento2?How to update product using magento client library for PHP?

                      Magento 2 - Auto login with specific URL Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Customer can't login - Page refreshes but nothing happensCustom Login page redirectURL to login with redirect URL after completionCustomer login is case sensitiveLogin with phone number or email address - Magento 1.9Magento 2: Set Customer Account Confirmation StatusCustomer auto connect from URLHow to call customer login form in the custom module action magento 2?Change of customer login error message magento2Referrer URL in modal login form