Injection into a proper class and choice without regularityAxiom of Choice and Order TypesProper class forcing vs forcing with a set of conditions bigger than one's modelHow big is the proper class of all sets?What is the order type of $L$ with Godel's well ordering?Minimal Generalized Continuum Hypothesis & Axiom of ChoiceOn the Axiom of Choice for Conglomerates and SkeletonsProper classes subnumerous to $V$ in a model of a Morse-Kelley related theoryAre classes still “larger” than sets without the axiom of choice?For which theories does ZFC without global choice prove the existence of a proper class monster model?“Surjective cardinals” - using surjections rather than injections to define isomorphism classes of sets

Injection into a proper class and choice without regularity


Axiom of Choice and Order TypesProper class forcing vs forcing with a set of conditions bigger than one's modelHow big is the proper class of all sets?What is the order type of $L$ with Godel's well ordering?Minimal Generalized Continuum Hypothesis & Axiom of ChoiceOn the Axiom of Choice for Conglomerates and SkeletonsProper classes subnumerous to $V$ in a model of a Morse-Kelley related theoryAre classes still “larger” than sets without the axiom of choice?For which theories does ZFC without global choice prove the existence of a proper class monster model?“Surjective cardinals” - using surjections rather than injections to define isomorphism classes of sets













5












$begingroup$


In $sf ZF$, we have that the axiom of choice is equivalent to:




For all sets $X$, and for all proper classes $Y$, $X$ inject into $Y$




and




For all sets $X$, and for all proper classes $Y$, $Y$ surject onto $X$




To see that those are indeed equivalent to choice we have for one direction to inject a set $X$ into $Ord$ and this will give well ordering for $X$(and because $Ord$ well ordered, we can easily construct an injective from $X$ to $Ord$ using a surjective from $Ord$ to $X$)



To see that the other direction is true, take a set $α$ and a class $Y$, because we are assuming $sf AC$ we may assume WLOG that $α∈Ord$. Then we may use induction to create a sequence $(x_β)$ of ordinals such that for $β<γ$ we have $Y∩V_x_βsubsetneq Y∩V_x_γ$, then we look at $V_x_α$, and by well ordering it find an injective $α→Y$(and surjective $Y→α$).



In the proof use relied heavily on the axiom of foundation, so we can ask are those 3 equivalent in $sf ZF^-$?



When talking with @Wojowu he told me that his intuition told him that $sf AC$ is not equivalent to the other 2, saying that he thinks that there is a model of $sf ZFC^-+mboxa proper class of atoms+mboxonly finite sets of atoms$, in which case no infinite set inject into the class of atoms, but after searching I couldn't find any reference to such model. My questions:



If such model exists, can someone direct me to a reference, or explain it's construction? If not, how those 2 behave in $sf ZF^-$?



What about the other 2? Does the surjective version implies the injective version in $sf ZF^-$?










share|cite|improve this question









New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    math.stackexchange.com/questions/1337583/… might be helpful?
    $endgroup$
    – Asaf Karagila
    4 hours ago















5












$begingroup$


In $sf ZF$, we have that the axiom of choice is equivalent to:




For all sets $X$, and for all proper classes $Y$, $X$ inject into $Y$




and




For all sets $X$, and for all proper classes $Y$, $Y$ surject onto $X$




To see that those are indeed equivalent to choice we have for one direction to inject a set $X$ into $Ord$ and this will give well ordering for $X$(and because $Ord$ well ordered, we can easily construct an injective from $X$ to $Ord$ using a surjective from $Ord$ to $X$)



To see that the other direction is true, take a set $α$ and a class $Y$, because we are assuming $sf AC$ we may assume WLOG that $α∈Ord$. Then we may use induction to create a sequence $(x_β)$ of ordinals such that for $β<γ$ we have $Y∩V_x_βsubsetneq Y∩V_x_γ$, then we look at $V_x_α$, and by well ordering it find an injective $α→Y$(and surjective $Y→α$).



In the proof use relied heavily on the axiom of foundation, so we can ask are those 3 equivalent in $sf ZF^-$?



When talking with @Wojowu he told me that his intuition told him that $sf AC$ is not equivalent to the other 2, saying that he thinks that there is a model of $sf ZFC^-+mboxa proper class of atoms+mboxonly finite sets of atoms$, in which case no infinite set inject into the class of atoms, but after searching I couldn't find any reference to such model. My questions:



If such model exists, can someone direct me to a reference, or explain it's construction? If not, how those 2 behave in $sf ZF^-$?



What about the other 2? Does the surjective version implies the injective version in $sf ZF^-$?










share|cite|improve this question









New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    math.stackexchange.com/questions/1337583/… might be helpful?
    $endgroup$
    – Asaf Karagila
    4 hours ago













5












5








5





$begingroup$


In $sf ZF$, we have that the axiom of choice is equivalent to:




For all sets $X$, and for all proper classes $Y$, $X$ inject into $Y$




and




For all sets $X$, and for all proper classes $Y$, $Y$ surject onto $X$




To see that those are indeed equivalent to choice we have for one direction to inject a set $X$ into $Ord$ and this will give well ordering for $X$(and because $Ord$ well ordered, we can easily construct an injective from $X$ to $Ord$ using a surjective from $Ord$ to $X$)



To see that the other direction is true, take a set $α$ and a class $Y$, because we are assuming $sf AC$ we may assume WLOG that $α∈Ord$. Then we may use induction to create a sequence $(x_β)$ of ordinals such that for $β<γ$ we have $Y∩V_x_βsubsetneq Y∩V_x_γ$, then we look at $V_x_α$, and by well ordering it find an injective $α→Y$(and surjective $Y→α$).



In the proof use relied heavily on the axiom of foundation, so we can ask are those 3 equivalent in $sf ZF^-$?



When talking with @Wojowu he told me that his intuition told him that $sf AC$ is not equivalent to the other 2, saying that he thinks that there is a model of $sf ZFC^-+mboxa proper class of atoms+mboxonly finite sets of atoms$, in which case no infinite set inject into the class of atoms, but after searching I couldn't find any reference to such model. My questions:



If such model exists, can someone direct me to a reference, or explain it's construction? If not, how those 2 behave in $sf ZF^-$?



What about the other 2? Does the surjective version implies the injective version in $sf ZF^-$?










share|cite|improve this question









New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




In $sf ZF$, we have that the axiom of choice is equivalent to:




For all sets $X$, and for all proper classes $Y$, $X$ inject into $Y$




and




For all sets $X$, and for all proper classes $Y$, $Y$ surject onto $X$




To see that those are indeed equivalent to choice we have for one direction to inject a set $X$ into $Ord$ and this will give well ordering for $X$(and because $Ord$ well ordered, we can easily construct an injective from $X$ to $Ord$ using a surjective from $Ord$ to $X$)



To see that the other direction is true, take a set $α$ and a class $Y$, because we are assuming $sf AC$ we may assume WLOG that $α∈Ord$. Then we may use induction to create a sequence $(x_β)$ of ordinals such that for $β<γ$ we have $Y∩V_x_βsubsetneq Y∩V_x_γ$, then we look at $V_x_α$, and by well ordering it find an injective $α→Y$(and surjective $Y→α$).



In the proof use relied heavily on the axiom of foundation, so we can ask are those 3 equivalent in $sf ZF^-$?



When talking with @Wojowu he told me that his intuition told him that $sf AC$ is not equivalent to the other 2, saying that he thinks that there is a model of $sf ZFC^-+mboxa proper class of atoms+mboxonly finite sets of atoms$, in which case no infinite set inject into the class of atoms, but after searching I couldn't find any reference to such model. My questions:



If such model exists, can someone direct me to a reference, or explain it's construction? If not, how those 2 behave in $sf ZF^-$?



What about the other 2? Does the surjective version implies the injective version in $sf ZF^-$?







reference-request set-theory lo.logic axiom-of-choice






share|cite|improve this question









New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 5 hours ago









András Bátkai

3,85142342




3,85142342






New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 5 hours ago









HoloHolo

1263




1263




New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    math.stackexchange.com/questions/1337583/… might be helpful?
    $endgroup$
    – Asaf Karagila
    4 hours ago












  • 1




    $begingroup$
    math.stackexchange.com/questions/1337583/… might be helpful?
    $endgroup$
    – Asaf Karagila
    4 hours ago







1




1




$begingroup$
math.stackexchange.com/questions/1337583/… might be helpful?
$endgroup$
– Asaf Karagila
4 hours ago




$begingroup$
math.stackexchange.com/questions/1337583/… might be helpful?
$endgroup$
– Asaf Karagila
4 hours ago










1 Answer
1






active

oldest

votes


















3












$begingroup$

The results appear in Jech's "The Axiom of Choice" in the problem section of Chapter 9 (Problems 2,3, and 4).



Indeed, it is easy to see that the injections into classes imply the surjections from classes which imply choice. Exactly by means of the class of ordinals. So the point is to separate the others.



And if we have a proper class of atoms whose subsets are all finite, then it is a class which does not map onto $omega$, but every set has only finitely many in its transitive closure, so it can be well-ordered.



The last model is described well in Jech, this is Problem 4 in the aforementioned reference, and the key point is that the atoms are indexed by countable sequences of ordinals, so that there are always surjections onto every set, but there is no $omega$ sequence of atoms, which form a proper class, so there is no injection from any infinite set into the class of atoms. (And indeed, that implies all sets of atoms are finite.)






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Holo is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f329987%2finjection-into-a-proper-class-and-choice-without-regularity%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    The results appear in Jech's "The Axiom of Choice" in the problem section of Chapter 9 (Problems 2,3, and 4).



    Indeed, it is easy to see that the injections into classes imply the surjections from classes which imply choice. Exactly by means of the class of ordinals. So the point is to separate the others.



    And if we have a proper class of atoms whose subsets are all finite, then it is a class which does not map onto $omega$, but every set has only finitely many in its transitive closure, so it can be well-ordered.



    The last model is described well in Jech, this is Problem 4 in the aforementioned reference, and the key point is that the atoms are indexed by countable sequences of ordinals, so that there are always surjections onto every set, but there is no $omega$ sequence of atoms, which form a proper class, so there is no injection from any infinite set into the class of atoms. (And indeed, that implies all sets of atoms are finite.)






    share|cite|improve this answer









    $endgroup$

















      3












      $begingroup$

      The results appear in Jech's "The Axiom of Choice" in the problem section of Chapter 9 (Problems 2,3, and 4).



      Indeed, it is easy to see that the injections into classes imply the surjections from classes which imply choice. Exactly by means of the class of ordinals. So the point is to separate the others.



      And if we have a proper class of atoms whose subsets are all finite, then it is a class which does not map onto $omega$, but every set has only finitely many in its transitive closure, so it can be well-ordered.



      The last model is described well in Jech, this is Problem 4 in the aforementioned reference, and the key point is that the atoms are indexed by countable sequences of ordinals, so that there are always surjections onto every set, but there is no $omega$ sequence of atoms, which form a proper class, so there is no injection from any infinite set into the class of atoms. (And indeed, that implies all sets of atoms are finite.)






      share|cite|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        The results appear in Jech's "The Axiom of Choice" in the problem section of Chapter 9 (Problems 2,3, and 4).



        Indeed, it is easy to see that the injections into classes imply the surjections from classes which imply choice. Exactly by means of the class of ordinals. So the point is to separate the others.



        And if we have a proper class of atoms whose subsets are all finite, then it is a class which does not map onto $omega$, but every set has only finitely many in its transitive closure, so it can be well-ordered.



        The last model is described well in Jech, this is Problem 4 in the aforementioned reference, and the key point is that the atoms are indexed by countable sequences of ordinals, so that there are always surjections onto every set, but there is no $omega$ sequence of atoms, which form a proper class, so there is no injection from any infinite set into the class of atoms. (And indeed, that implies all sets of atoms are finite.)






        share|cite|improve this answer









        $endgroup$



        The results appear in Jech's "The Axiom of Choice" in the problem section of Chapter 9 (Problems 2,3, and 4).



        Indeed, it is easy to see that the injections into classes imply the surjections from classes which imply choice. Exactly by means of the class of ordinals. So the point is to separate the others.



        And if we have a proper class of atoms whose subsets are all finite, then it is a class which does not map onto $omega$, but every set has only finitely many in its transitive closure, so it can be well-ordered.



        The last model is described well in Jech, this is Problem 4 in the aforementioned reference, and the key point is that the atoms are indexed by countable sequences of ordinals, so that there are always surjections onto every set, but there is no $omega$ sequence of atoms, which form a proper class, so there is no injection from any infinite set into the class of atoms. (And indeed, that implies all sets of atoms are finite.)







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 3 hours ago









        Asaf KaragilaAsaf Karagila

        21.8k681187




        21.8k681187




















            Holo is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Holo is a new contributor. Be nice, and check out our Code of Conduct.












            Holo is a new contributor. Be nice, and check out our Code of Conduct.











            Holo is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f329987%2finjection-into-a-proper-class-and-choice-without-regularity%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            یوتیوب محتویات پیشینه[ویرایش] فناوری‌های ویدئویی[ویرایش] شوخی‌های آوریل[ویرایش] سانسور و فیلترینگ[ویرایش] آمار و ارقامی از یوتیوب[ویرایش] تأثیر اجتماعی[ویرایش] سیاست اجتماعی[ویرایش] نمودارها[ویرایش] یادداشت‌ها[ویرایش] پانویس[ویرایش] پیوند به بیرون[ویرایش] منوی ناوبریبررسی شده‌استYouTube.com[بروزرسانی]"Youtube.com Site Info""زبان‌های یوتیوب""Surprise! There's a third YouTube co-founder"سایت یوتیوب برای چندمین بار در ایران فیلتر شدنسخهٔ اصلیسالار کمانگر جوان آمریکایی ایرانی الاصل مدیر سایت یوتیوب شدنسخهٔ اصلیVideo websites pop up, invite postingsthe originalthe originalYouTube: Overnight success has sparked a backlashthe original"Me at the zoo"YouTube serves up 100 million videos a day onlinethe originalcomScore Releases May 2010 U.S. Online Video Rankingsthe originalYouTube hits 4 billion daily video viewsthe originalYouTube users uploading two days of video every minutethe originalEric Schmidt, Princeton Colloquium on Public & Int'l Affairsthe original«Streaming Dreams»نسخهٔ اصلیAlexa Traffic Rank for YouTube (three month average)the originalHelp! YouTube is killing my business!the originalUtube sues YouTubethe originalGoogle closes $A2b YouTube dealthe originalFlash moves on to smart phonesthe originalYouTube HTML5 Video Playerنسخهٔ اصلیYouTube HTML5 Video Playerthe originalGoogle tries freeing Web video with WebMthe originalVideo length for uploadingthe originalYouTube caps video lengths to reduce infringementthe originalAccount Types: Longer videosthe originalYouTube bumps video limit to 15 minutesthe originalUploading large files and resumable uploadingthe originalVideo Formats: File formatsthe originalGetting Started: File formatsthe originalThe quest for a new video codec in Flash 8the originalAdobe Flash Video File Format Specification Version 10.1the originalYouTube Mobile goes livethe originalYouTube videos go HD with a simple hackthe originalYouTube now supports 4k-resolution videosthe originalYouTube to get high-def 1080p playerthe original«Approximate YouTube Bitrates»نسخهٔ اصلی«Bigger and Better: Encoding for YouTube 720p HD»نسخهٔ اصلی«YouTube's 1080p – Failure Depends on How You Look At It»نسخهٔ اصلیYouTube in 3Dthe originalYouTube in 3D?the originalYouTube 3D Videosthe originalYouTube adds a dimension, 3D goggles not includedthe originalYouTube Adds Stereoscopic 3D Video Support (And 3D Vision Support, Too)the original«Sharing YouTube Videos»نسخهٔ اصلی«Downloading videos from YouTube is not supported, except for one instance when it is permitted.»نسخهٔ اصلی«Terms of Use, 5.B»نسخهٔ اصلی«Some YouTube videos get download option»نسخهٔ اصلی«YouTube looks out for content owners, disables video ripping»«Downloading videos from YouTube is not supported, except for one instance when it is permitted.»نسخهٔ اصلی«YouTube Hopes To Boost Revenue With Video Downloads»نسخهٔ اصلی«YouTube Mobile»نسخهٔ اصلی«YouTube Live on Apple TV Today; Coming to iPhone on June 29»نسخهٔ اصلی«Goodbye Flash: YouTube mobile goes HTML5 on iPhone and Android»نسخهٔ اصلی«YouTube Mobile Goes HTML5, Video Quality Beats Native Apps Hands Down»نسخهٔ اصلی«TiVo Getting YouTube Streaming Today»نسخهٔ اصلی«YouTube video comes to Wii and PlayStation 3 game consoles»نسخهٔ اصلی«Coming Up Next... YouTube on Your TV»نسخهٔ اصلی«Experience YouTube XL on the Big Screen»نسخهٔ اصلی«Xbox Live Getting Live TV, YouTube & Bing Voice Search»نسخهٔ اصلی«YouTube content locations»نسخهٔ اصلی«April fools: YouTube turns the world up-side-down»نسخهٔ اصلی«YouTube goes back to 1911 for April Fools' Day»نسخهٔ اصلی«Simon Cowell's bromance, the self-driving Nascar and Hungry Hippos for iPad... the best April Fools' gags»نسخهٔ اصلی"YouTube Announces It Will Shut Down""YouTube Adds Darude 'Sandstorm' Button To Its Videos For April Fools' Day"«Censorship fears rise as Iran blocks access to top websites»نسخهٔ اصلی«China 'blocks YouTube video site'»نسخهٔ اصلی«YouTube shut down in Morocco»نسخهٔ اصلی«Thailand blocks access to YouTube»نسخهٔ اصلی«Ban on YouTube lifted after deal»نسخهٔ اصلی«Google's Gatekeepers»نسخهٔ اصلی«Turkey goes into battle with Google»نسخهٔ اصلی«Turkey lifts two-year ban on YouTube»نسخهٔ اصلیسانسور در ترکیه به یوتیوب رسیدلغو فیلترینگ یوتیوب در ترکیه«Pakistan blocks YouTube website»نسخهٔ اصلی«Pakistan lifts the ban on YouTube»نسخهٔ اصلی«Pakistan blocks access to YouTube in internet crackdown»نسخهٔ اصلی«Watchdog urges Libya to stop blocking websites»نسخهٔ اصلی«YouTube»نسخهٔ اصلی«Due to abuses of religion, customs Emirates, YouTube is blocked in the UAE»نسخهٔ اصلی«Google Conquered The Web - An Ultimate Winner»نسخهٔ اصلی«100 million videos are viewed daily on YouTube»نسخهٔ اصلی«Harry and Charlie Davies-Carr: Web gets taste for biting baby»نسخهٔ اصلی«Meet YouTube's 224 million girl, Natalie Tran»نسخهٔ اصلی«YouTube to Double Down on Its 'Channel' Experiment»نسخهٔ اصلی«13 Some Media Companies Choose to Profit From Pirated YouTube Clips»نسخهٔ اصلی«Irate HK man unlikely Web hero»نسخهٔ اصلی«Web Guitar Wizard Revealed at Last»نسخهٔ اصلی«Charlie bit my finger – again!»نسخهٔ اصلی«Lowered Expectations: Web Redefines 'Quality'»نسخهٔ اصلی«YouTube's 50 Greatest Viral Videos»نسخهٔ اصلیYouTube Community Guidelinesthe original«Why did my YouTube account get closed down?»نسخهٔ اصلی«Why do I have a sanction on my account?»نسخهٔ اصلی«Is YouTube's three-strike rule fair to users?»نسخهٔ اصلی«Viacom will sue YouTube for $1bn»نسخهٔ اصلی«Mediaset Files EUR500 Million Suit Vs Google's YouTube»نسخهٔ اصلی«Premier League to take action against YouTube»نسخهٔ اصلی«YouTube law fight 'threatens net'»نسخهٔ اصلی«Google must divulge YouTube log»نسخهٔ اصلی«Google Told to Turn Over User Data of YouTube»نسخهٔ اصلی«US judge tosses out Viacom copyright suit against YouTube»نسخهٔ اصلی«Google and Viacom: YouTube copyright lawsuit back on»نسخهٔ اصلی«Woman can sue over YouTube clip de-posting»نسخهٔ اصلی«YouTube loses court battle over music clips»نسخهٔ اصلیYouTube to Test Software To Ease Licensing Fightsthe original«Press Statistics»نسخهٔ اصلی«Testing YouTube's Audio Content ID System»نسخهٔ اصلی«Content ID disputes»نسخهٔ اصلیYouTube Community Guidelinesthe originalYouTube criticized in Germany over anti-Semitic Nazi videosthe originalFury as YouTube carries sick Hillsboro video insultthe originalYouTube attacked by MPs over sex and violence footagethe originalAl-Awlaki's YouTube Videos Targeted by Rep. Weinerthe originalYouTube Withdraws Cleric's Videosthe originalYouTube is letting users decide on terrorism-related videosthe original«Time's Person of the Year: You»نسخهٔ اصلی«Our top 10 funniest YouTube comments – what are yours?»نسخهٔ اصلی«YouTube's worst comments blocked by filter»نسخهٔ اصلی«Site Info YouTube»نسخهٔ اصلیوبگاه YouTubeوبگاه موبایل YouTubeوووووو

            Magento 2 - Auto login with specific URL Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Customer can't login - Page refreshes but nothing happensCustom Login page redirectURL to login with redirect URL after completionCustomer login is case sensitiveLogin with phone number or email address - Magento 1.9Magento 2: Set Customer Account Confirmation StatusCustomer auto connect from URLHow to call customer login form in the custom module action magento 2?Change of customer login error message magento2Referrer URL in modal login form

            Rest API with Magento using PHP with example. Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How to update product using magento client library for PHP?Oauth Error while extending Magento Rest APINot showing my custom api in wsdl(url) and web service list?Using Magento API(REST) via IXMLHTTPRequest COM ObjectHow to login in Magento website using REST APIREST api call for Guest userMagento API calling using HTML and javascriptUse API rest media management by storeView code (admin)Magento REST API Example ErrorsHow to log all rest api calls in magento2?How to update product using magento client library for PHP?