واریانس ناهمسانی شرطی اتورگرسیو محتویات مشخصات مدل (ARCH(q[ویرایش] GARCH[ویرایش] GARCH غیرخطیNGARCH[ویرایش] IGARCH[ویرایش] EGARCH[ویرایش] GARCH-M[ویرایش] QGARCH[ویرایش] GJR-GARCH[ویرایش] مدل TGARCH[ویرایش] پانویس[ویرایش] منوی ناوبری"Measuring and testing the impact of news on volatility""Analysis Of The Exchange Rate And Pricing Foreign Currency Options On The Croatian Market: The Ngarch Model As An Alternative To The Black Scholes Model"Glossary to ARCH (GARCH)A Test for Multivariate ARCH Effectsوو
میانگینمیانگین حسابیمیانگین هندسیمیانگین همسازمیانهمددامنهانحراف معیارضریب تغییراتصدکدامنه بین چارکیواریانسچولگیکشیدگیگشتاورال-گشتاوردادههای گروهبندیشدهتوزیع فراوانیجدول پیشایندینمودار میلهایدونمودارهنمودار جعبهاینمودار کنترلهمبستگینگارنمودار جنگلیبافتنگارنمودار Q-Qنمودار توالینمودار پراکنشنمودار ساقه و برگنمودار راداریاندازه تأثیرخطای استانداردتوان آماریتعیین اندازه نمونهطراحی آزمایشآزمایش تصادفیانتساب تصادفیتکرار آزمایشبلوکبندیآزمایش عاملیطراحی بهینهتوزیع نمونهگیریآماره بسندهفراتحلیلآماره ترتیبیآماره کاوشیمقدار رکوردکامل بودنخانواده نماییآزمون جایگشتیآزمون تصادفیدنتوزیع نمونهایبوتاسترپینگآماره Uکاراییآمار باثباتاحتمال بیزیاحتمال پیشیناحتمال پسینبازه مورد قبولعامل بیزبرآوردگر بیزیبرآوردگر بیشینهگر احتمال پسینضریب همبستگی پیرسونهمبستگی جزئیاختلاطضریب تشخیصرگرسیون ساده خطی(en)کمینه مربعات خطیمدل خطی عمومی(en)رگرسیون خطی بیزی(en)خانواده نماییرگرسیون لجستیکرگرسیون دوجملهای(en)پواسونکاپای کوهنجدول پیشایندیمدل گرافیرگرسیون پواسونآزمون مکنمارتجزیهتخمین روندفرایند ماناتصحیح فصلیبودنهموارسازی نمایی(en)همجمعیعلیت گرانجرآماره Q(en)آماره دوربین-واتسون(en)خودهمبستگیتابع خودهمبستگی جزئی(en)تابع خودهمبستگی تقاطعی(en)آرمامدل آریماگارچاتورگرسیو برداریتخمین طیفیتحلیل فوریهموجکتابع بقا(en)برآوردگر کاپلان-مهیرآزمون لگرتبهای(en)نرخ خرابیمدل خطرهای متناسب(en)مدل زمان خرابی شتابیده(en)بیوانفورماتیکزیستسنجشیکارآزمایی بالینیمطالعاتهمهگیرشناسیآمار پزشکیآکچوئریسرشماریآمار جرم(en)آمار جمعیتشناسی(en)اقتصادسنجیآمار ملی(en)آمار رسمی(en)جامعه آماریروانسنجیفرایند برنولیفرایند شاخهایفرایند رستوران چینیفرایند گالتون-واتسونمتغیرهای تصادفی مستقل با توزیع یکسانزنجیره مارکوففرایند مورنولگشتLoop-erasedولگشت خودپرهیز (قدم زدن بدون قطع کردن خود)فرایند شاخهایGalves–Löcherbach modelفرایند گاوسیمدل پنهان مارکفزنجیره مارکوفمارتینگیلDifferencesLocalمارتینگیلمارتینگیلRandom dynamical systemRegenerative processنظریه تجدیدStochastic chains with memory of variable lengthنویز سفیدواریانس ناهمسانی شرطی اتورگرسیومیانگین متحرک خودهمبسته یکپارچهمدل خودهمبستهمدل خودهمبسته میانگین متحرکواریانس ناهمسانی شرطی اتورگرسیومدل میانگین متحرکBühlmannCramér–LundbergRisk processSparre–Andersonتابع CàdlàgContinuousContinuous pathsارگادیسیتیمتغیرهای تصادفی تعویض پذیرFeller-continuousفرآیندهای تصادفی گاوسی-مارکوفخاصیت مارکفMixingPiecewise deterministicPredictableProgressively measurableSelf-similarفرایند ماناTime-reversibleBurkholder–Davis–GundyDoob's martingaleKunita–Watanabeبیمسنجیاقتصادسنجینظریه ارگودیکنظریه مقدار حدیقضیه انحرافات بزرگمالیه ریاضیاتیMathematical statisticsنظریه احتمالاتنظریه صفنظریه تجدیدRuin theoryآمارحسابان تصادفیسری زمانییادگیری ماشین
فرایندهای تصادفیاقتصادسنجیتحلیل سری زمانیخودهمبستگی
اقتصاد سنجیسری زمانیقیمت گذاریانحراف معیار
واریانس ناهمسانی شرطی اتورگرسیو
پرش به ناوبری
پرش به جستجو
ترجمهٔ عنوان این مقاله دارای منبع نیست. ویرایشگران ویکیپدیا از طرفی طبق سیاست تحقیق دستاول ممنوع نمیتوانند اصطلاحات زبانهای دیگر را خود بدون منبع ثانویه ترجمه کنند و از طرفی دیگر بر اساس شیوهنامه در اکثر مواقع نمیتوانند عنوان مقاله را با الفبای زبانی دیگر رها کنند. اگر برای عنوان فعلی این مقاله (یا عنوانی دیگر)، معادلی مناسب از منبعی معتبر یافتید، با ذکر آن منبع و با شیوهٔ صحیح ارجاع، آن را در متن مقاله قرار دهید و سپس مقاله را انتقال دهید. اگر نمیدانید چطور انتقال را انجام یا بهدرستی به منابع ارجاع دهید، در صفحهٔ بحث این مقاله درخواست خود را با قراردادن این متن بیان کنید: درخواست انتقال ''معادل مناسبی که در نظر گرفتهاید همراه منبعی که این معادل را در آن دیدهاید'' ~~~~ |
این مقاله نیازمند ویکیسازی است. لطفاً با توجه به راهنمای ویرایش و شیوهنامه، محتوای آن را بهبود بخشید. |
در اقتصاد سنجی مدل با خصوصیت autoregressive conditional heteroscedasticity به مدلی گفته میشود که فرض بر این دارد که واریانس error termها یا innovationها یک تابع از اندازه error termهای دورههای زمانی قبل است: معمولاً واریانس با مربع innovationهای قبلی مرتبط است. چنین مدلی معمولاً ARCH نامیده میشود (Engle, 1982)، البته علامتهای اختصاری دیگری هم برای مدلهای بر همین پایه بکار برده میشود. مدلهای ARCH معمولاً برای سریهای زمانی مالی بکار برده میشود که دسته بندیهای نوسانی بر پایه زمان - که دورههای با نوسان با دورههای بدون نوسان همراه میشوند - را نشان می دهند.
محتویات
۱ مشخصات مدل (ARCH(q
۲ GARCH
۳ GARCH غیرخطیNGARCH
۴ IGARCH
۵ EGARCH
۶ GARCH-M
۷ QGARCH
۸ GJR-GARCH
۹ مدل TGARCH
۱۰ پانویس
مشخصات مدل (ARCH(q[ویرایش]
اگر ϵt displaystyle ~epsilon _t~ نشان دهنده error termها باشد و فرض شود ϵt=σtzt displaystyle ~epsilon _t=sigma _tz_t~ وقتی که zt∼iidN(0,1)displaystyle z_toverset textrm iidthicksim N(0,1)، سری σt2displaystyle sigma _t^2 به صورت زیر مدل میشود
σt2=α0+α1ϵt−12+⋯+αqϵt−q2=α0+∑i=1qαiϵt−i2displaystyle sigma _t^2=alpha _0+alpha _1epsilon _t-1^2+cdots +alpha _qepsilon _t-q^2=alpha _0+sum _i=1^qalpha _iepsilon _t-i^2
که در آن α0>0 displaystyle ~alpha _0>0~ , αi≥0, i>0displaystyle alpha _igeq 0,~i>0
مدل (ARCH(q را میتوان با حداقل مربعات تخمین زد. یک متودولوژی برای پیدا کردن طول لگ errorها در ARCH استفاده از Lagrange multiplier است که توسط (Engle (1982 ارائه شده. این رویه به صورت زیر است:
- بهترین مدل (AR(q برای مدل yt=a0+a1yt−1+⋯+aqyt−q+ϵt=a0+∑i=1qaiyt−i+ϵtdisplaystyle y_t=a_0+a_1y_t-1+cdots +a_qy_t-q+epsilon _t=a_0+sum _i=1^qa_iy_t-i+epsilon _t را تخمین میزنیم.
- مربع errorها ϵ^2displaystyle hat epsilon ^2 را بدست آورده و آنها را روی مقدار ثابت و مقادیر با q لگ رگرس می کنیم.
- ϵ^t2=α^0+∑i=1qα^iϵ^t−i2displaystyle hat epsilon _t^2=hat alpha _0+sum _i=1^qhat alpha _ihat epsilon _t-i^2
- که q طول لگهای ARCH میباشد.
فرض صفر این است که در نبود اجزاء ARCH برای تمامی i=1,⋯,qdisplaystyle i=1,cdots ,q معادله αi=0displaystyle alpha _i=0 برقرار است. فرض مقابل (alternative hypothesis) نیز این است که با وجود اجزاء ARCH حداقل یکی از ضرایب αidisplaystyle alpha _i معنا دار باشند. در یک نمونه T تایی از residualها تحت فرض صفر، آماره TR² توزیع χ2displaystyle chi ^2 با q درجه آزادی را خواهد داشت. اگر TR² بزرگ تر از مقدار Chi-square در جدول باشد فرض صفر را رد می کنیم و نتیجه می گیریم که در مدل ARMA اثر ARCH وجود دارد. اگر TR² کوچکتر از مقدار Chi-square در جدول باشد، فرض صفر رد نخواهد شد.
GARCH[ویرایش]
اگر مدل (autoregressive moving average (ARMA را برای واریانس errorها فرض بگیریم، مدل generalized autoregressive conditional heteroscedasticity GARCH, Bollerslev 1986 را خواهیم داشت.
در این حالت مدل (GARCH(p, q که در آن p مرتبه σ2displaystyle ~sigma ^2 در مدل GARCH و q مرتبه ϵ2displaystyle ~epsilon ^2 را در این مدل نشان میدهد) به صورت زیر نشان داده میشود
σt2=α0+α1ϵt−12+⋯+αqϵt−q2+β1σt−12+⋯+βpσt−p2=α0+∑i=1qαiϵt−i2+∑i=1pβiσt−i2displaystyle sigma _t^2=alpha _0+alpha _1epsilon _t-1^2+cdots +alpha _qepsilon _t-q^2+beta _1sigma _t-1^2+cdots +beta _psigma _t-p^2=alpha _0+sum _i=1^qalpha _iepsilon _t-i^2+sum _i=1^pbeta _isigma _t-i^2
معمولاً در اقتصاد سنجی وقتی برای heteroscedasticity تست می کنیم، بهترین راه تست White است. هرچند هنگامی که با دادههای سری زمانی کار می کنیم، این به معنی تست برای errorها در مدل ARCH یا در مدل GARCH است.
قبل از GARCH مدل EWMA بود که مدل GARCH جانشین آن شد، هرچند برخی افراد از هر دو این مدلها استفاده میکنند.
مشخصات مدل (GARCH(p, q
طول لگ p در مدل (GARCH(p, q از سه قدم بدست میآید
- بهترین مدل را برای (AR(q تخمین می زنیم
- yt=a0+a1yt−1+⋯+aqyt−q+ϵt=a0+∑i=1qaiyt−i+ϵtdisplaystyle y_t=a_0+a_1y_t-1+cdots +a_qy_t-q+epsilon _t=a_0+sum _i=1^qa_iy_t-i+epsilon _t
- مقدار autocorrelationهای ϵ2displaystyle epsilon ^2 را از فرمول زیر محاسبه و روی نمودار مشخص می کنیم
- ρ=∑t=i+1T(ϵ^t2−σ^t2)(ϵ^t−12−σ^t−12)∑t=12(ϵ^t2−σ^t2)2displaystyle rho =sum _t=i+1^T(hat epsilon _t^2-hat sigma _t^2)(hat epsilon _t-1^2-hat sigma _t-1^2) over sum _t=1^2(hat epsilon _t^2-hat sigma _t^2)^2
انحراف از معیار مجانبی ρ(i)displaystyle rho (i) برای نمونههای بزرگ 1/Tdisplaystyle 1/sqrt T است. مقادیری که بزرگتر از این میزان باشند errorهای GARCH را معین میکنند. برای مشخص کردن تعداد لگها از تست Ljung-Box test استفاده می کنیم. آماره Q در Ljung-Box توزیع χ2displaystyle chi ^2 را با n درجه آزادی خواهد داشت اگر مربع residualها ϵt2displaystyle epsilon _t^2 uncorrelated باشند. معمولاً T/4 را برای n درنظر میگیرند. فرض صفر بیان میکند که errorها از نوع ARCH یاGARCH نیستند. رد فرض صفر نشان میدهد که چنین errorهایی در واریانسهای شرطی وجود دارد.
GARCH غیرخطیNGARCH[ویرایش]
GARCH غیر خطی که (GARCH(1,1 غیر خطی نامتقارن نیز نامیده میشود توسط Engle و Ng در 1993 معرفی شد.
σt2= ω+ α( ϵt−1− θ σt−1)2+ β σt−12displaystyle ~sigma _t^2=~omega +~alpha (~epsilon _t-1-~theta ~sigma _t-1)^2+~beta ~sigma _t-1^2
α, β≥0; ω>0displaystyle ~alpha ,~beta geq 0;~omega >0.
برای بازده سهام مقدار پارامتر θdisplaystyle ~theta معمولاً به صورت مثبت تقریب زده میشود. در این مورد این پارامتر اثر اهرمی را نشان میدهد و این مفهوم را دارد که بازده منفی، بی ثباتی در آینده را بیشتر از همان مقدار بازده مثبت، افزایش میدهد.[۱][۲]
این مدل را نباید با مدل NARCH که توسط Higgins و Bera در 1992 ارائه شد اشتباه گرفت.
IGARCH[ویرایش]
Integrated Generalized Autoregressive Conditional Heteroscedasticity یا IGARCH ورژن محدود شده مدل GARCH است که جمع پارامترهای آن برابر واحد میشود و بنابراین یک ریشه واحد (unit root) در GARCH وجود دارد. قید آن به صورت زیر میباشد
∑i=1p βi+∑i=1q αi=1displaystyle sum _i=1^p~beta _i+sum _i=1^q~alpha _i=1
EGARCH[ویرایش]
exponential general autoregressive conditional heteroscedastic یا (EGARCH) توسط Nelson 1991 مدل شده که یک فرم دیگر از GARCH است. بطور تفصیلی (EGARCH(p,q به صورت زیر مشخص میشود
logσt2=ω+∑k=1pβkg(Zt−k)+∑k=1qαklogσt−k2displaystyle log sigma _t^2=omega +sum _k=1^pbeta _kg(Z_t-k)+sum _k=1^qalpha _klog sigma _t-k^2
که در آن g(Zt)=θZt+λ(|Zt|−E(|Zt|))-E(، σt2displaystyle sigma _t^2 واریانس مشروط و ωdisplaystyle omega ، βdisplaystyle beta ، αdisplaystyle alpha ، θdisplaystyle theta و λdisplaystyle lambda ضرایب و Ztdisplaystyle Z_t میتواند متغیر نرمال باشد یا از توزیع تعمیم یافته errorها بدست آمده باشد. فرموله کردن g(Zt)displaystyle g(Z_t) به ما اجازه میدهد که علامت و مقدار Ztdisplaystyle Z_t اثر مشخصی روی نوسانات داشته باشد. این امر بطور خاص در زمینه قیمت گذاری داراییها سودمند است.[۳]
از آنجا که logσt2displaystyle log sigma _t^2 ممکن است منفی شود قید دیگری روی پارامترها نمیگذاریم.
GARCH-M[ویرایش]
GARCH-in-mean یا (GARCH-M) یک ترم heteroscedasticity به معادله میانگین اضافه میکند و به صورت زیر مشخص میشود:
yt= βxt+ λ σt+ ϵtdisplaystyle y_t=~beta x_t+~lambda ~sigma _t+~epsilon _t
که residualها ϵtdisplaystyle ~epsilon _t به این صورت معرفی میشوند
ϵt= σt ×ztdisplaystyle ~epsilon _t=~sigma _t~times z_t
QGARCH[ویرایش]
Quadratic GARCH QGARCH توسط Sentana 1995 ارائه شد که برای مدل کردن اثرات نامتقارن شوکهای منفی و مثبت بکار میرود.
برای یک مثال از مدل (GARCH(1,1 که در آن روند residual عبارتست از
ϵt= σtztdisplaystyle ~epsilon _t=~sigma _tz_t
که در آن ztdisplaystyle z_t به صورت i.i.d است و داریم
σt2=K+ α ϵt−12+ β σt−12+ ϕ ϵt−1displaystyle ~sigma _t^2=K+~alpha ~epsilon _t-1^2+~beta ~sigma _t-1^2+~phi ~epsilon _t-1
GJR-GARCH[ویرایش]
همانند (QGARCH، Glosten-Jagannathan-Runkle GARCH (GJR-GARCH که توسط Glosten, Jagannathan و (Runkle (1993 مدل شد، عدم تقارن در پروسه GARCH مدل میکند که پیشنهاد میکند ϵt= σtztdisplaystyle ~epsilon _t=~sigma _tz_t را مدل کنیم که در آن ztdisplaystyle z_t i.i.d است.
σt2=K+ δ σt−12+ α ϵt−12+ ϕ ϵt−12It−1displaystyle ~sigma _t^2=K+~delta ~sigma _t-1^2+~alpha ~epsilon _t-1^2+~phi ~epsilon _t-1^2I_t-1
که اگر ϵt−1≥0displaystyle ~epsilon _t-1geq 0 باشد It−1=0displaystyle I_t-1=0 است
و اگر ϵt−1<0displaystyle ~epsilon _t-1<0 باشد It−1=1displaystyle I_t-1=1 است.
مدل TGARCH[ویرایش]
نهایتاً (Threshold GARCH (TGARCH که توسط (Zakoian (1994 مدل شده همانند GJR GARCH است و مشخصه آن شرطی بودن انحراف معیار است به جای شرطی بودن واریانس:
σt=K+ δ σt−1+ α1+ ϵt−1++ α1− ϵt−1−displaystyle ~sigma _t=K+~delta ~sigma _t-1+~alpha _1^+~epsilon _t-1^++~alpha _1^-~epsilon _t-1^-
که در آن اگر ϵt−1>0displaystyle ~epsilon _t-1>0 باشد ϵt−1+= ϵt−1displaystyle ~epsilon _t-1^+=~epsilon _t-1 است و اکر ϵt−1≤0displaystyle ~epsilon _t-1leq 0 باشد ϵt−1+=0displaystyle ~epsilon _t-1^+=0 است. همچنین ϵt−1−= ϵt−1displaystyle ~epsilon _t-1^-=~epsilon _t-1 است اگر ϵt−1≤0displaystyle ~epsilon _t-1leq 0 باشد و ϵt−1−=0displaystyle ~epsilon _t-1^-=0 است اگر ϵt−1>0displaystyle ~epsilon _t-1>0 باشد.
پانویس[ویرایش]
↑ Engle, R.F. "Measuring and testing the impact of news on volatility". Journal of Finance. 48 (5): 1749–1778. Unknown parameter|coauthors=
ignored (|author=
suggested) (help).mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output div[dir=ltr] .cs1-lock-subscription a,.mw-parser-output div[dir=ltr] .cs1-lock-limited a,.mw-parser-output div[dir=ltr] .cs1-lock-registration abackground-position:left .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
↑ Posedel, Petra (2006). "Analysis Of The Exchange Rate And Pricing Foreign Currency Options On The Croatian Market: The Ngarch Model As An Alternative To The Black Scholes Model" (PDF). Financial Theory and Practice. 30 (4): 347–368.
↑ St. Pierre, Eilleen F (1998): Estimating EGARCH-M Models: Science or Art, The Quarterly Review of Economics and Finance, Vol. 38, No. 2, pp. 167-180 [۱]
Tim Bollerslev. "Generalized Autoregressive Conditional Heteroskedasticity", Journal of Econometrics, 31:307-327, 1986.- Enders, W. , Applied Econometrics Time Series, John-Wiley & Sons, 139-149, 1995
رابرت انگل. "Autoregressive Conditional Heteroscedasticity with Estimates of Variance of United Kingdom Inflation", Econometrica 50:987-1008, 1982. (the paper which sparked the general interest in ARCH models)- Robert F. Engle. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics", Journal of Economic Perspectives 15(4):157-168, 2001. (a short, readable introduction) [۲]
- Engle, R.F. (1995) ARCH: selected readings. Oxford University Press. ISBN 0-19-877432-X
- Gujarati, D. N. , Basic Econometrics, 856-862, 2003
- Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach, Econometrica 59: 347-370.
- Bollerslev, Tim (2008). Glossary to ARCH (GARCH), working paper
- Hacker, R. S. and Hatemi-J, A. (2005). A Test for Multivariate ARCH Effects, Applied Economics Letters, Vol. 12(7), pp. 411-417.
- http://en.wikipedia.org/wiki/Autoregressive_conditional_heteroskedasticity
ردهها:
- فرایندهای تصادفی
- اقتصادسنجی
- تحلیل سری زمانی
- خودهمبستگی
(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.508","walltime":"0.765","ppvisitednodes":"value":2660,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":365164,"limit":2097152,"templateargumentsize":"value":35414,"limit":2097152,"expansiondepth":"value":16,"limit":40,"expensivefunctioncount":"value":33,"limit":500,"unstrip-depth":"value":1,"limit":20,"unstrip-size":"value":9211,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 332.204 1 -total"," 82.73% 274.817 16 الگو:Navbox"," 38.00% 126.226 1 الگو:آمار"," 36.58% 121.512 1 الگو:Navbox_with_collapsible_groups"," 28.06% 93.231 1 الگو:پانویس"," 25.51% 84.731 2 الگو:Cite_journal"," 16.26% 54.025 1 الگو:عنوان_مقاله"," 15.14% 50.302 2 الگو:Ambox"," 12.39% 41.144 33 الگو:پم"," 4.03% 13.372 1 الگو:فرایندهای_تصادفی"],"scribunto":"limitreport-timeusage":"value":"0.126","limit":"10.000","limitreport-memusage":"value":4059096,"limit":52428800,"cachereport":"origin":"mw1321","timestamp":"20190425214750","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":137,"wgHostname":"mw1263"););