Skip to main content

Proportional hazards model Contents Introduction[edit] The Cox model[edit] Time-varying predictors and coefficients[edit] Specifying the baseline hazard function[edit] Relationship to Poisson models[edit] Under high-dimensional setup[edit] See also[edit] Notes[edit] References[edit] Navigation menu10.2307/140265914026592985181034175810.1214/ss/117701039410.1080/01621459.1977.10480613228621710.1214/aos/11763459762240714293834910.1111/1468-0297.0003410.1007/0-387-33960-4"timereg: Flexible Regression Models for Survival Data"10.1016/j.ejor.2016.07.05210.1002/sim.23691668080410.2307/2287816228781610.1.1.411.802410.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-31010.523310.1214/11-AOS911230661711207.451010.1214/15-EJS10041204.199210.5705/ss.2012.240245163281306.484710.1214/13-AOS10982408609110.1007/s10958-010-9929-6"Duration Models""Fitting Cox Regression Models"e

Survival analysisSemi-parametric modelsPoisson point processes


survival modelsstatisticscovariatesassociatedhazard rateaccelerated failure time modelsaccelerated failure time modelhazard functioncovariatecensoring patternhazard ratiosSir David CoxCox proportional hazardspartial likelihoodscore functionHessian matrixNewton-Raphsonstandard errorstime-varying covariatesmorbidityR packageadditive hazards modelsleast squaresWeibull hazard functionaccelerated failure timePoisson regressiongeneralized linear modelsLASSO methodL1-norm












Proportional hazards model




From Wikipedia, the free encyclopedia

  (Redirected from Proportional hazards models)





Jump to navigation
Jump to search


Proportional hazards models are a class of survival models in statistics. Survival models relate the time that passes, before some event occurs, to one or more covariates that may be associated with that quantity of time. In a proportional hazards model, the unique effect of a unit increase in a covariate is multiplicative with respect to the hazard rate. For example, taking a drug may halve one's hazard rate for a stroke occurring, or, changing the material from which a manufactured component is constructed may double its hazard rate for failure. Other types of survival models such as accelerated failure time models do not exhibit proportional hazards. The accelerated failure time model describes a situation where the biological or mechanical life history of an event is accelerated (or decelerated).




Contents





  • 1 Introduction


  • 2 The Cox model

    • 2.1 Tied times



  • 3 Time-varying predictors and coefficients


  • 4 Specifying the baseline hazard function


  • 5 Relationship to Poisson models


  • 6 Under high-dimensional setup


  • 7 See also


  • 8 Notes


  • 9 References




Introduction[edit]


Survival models can be viewed as consisting of two parts: the underlying baseline hazard function, often denoted λ0(t)displaystyle lambda _0(t), describing how the risk of event per time unit changes over time at baseline levels of covariates; and the effect parameters, describing how the hazard varies in response to explanatory covariates. A typical medical example would include covariates such as treatment assignment, as well as patient characteristics such as age at start of study, gender, and the presence of other diseases at start of study, in order to reduce variability and/or control for confounding.


The proportional hazards condition[1] states that covariates are multiplicatively related to the hazard. In the simplest case of stationary coefficients, for example, a treatment with a drug may, say, halve a subject's hazard at any given time tdisplaystyle t, while the baseline hazard may vary. Note however, that this does not double the lifetime of the subject; the precise effect of the covariates on the lifetime depends on the type of λ0(t)displaystyle lambda _0(t). The covariate is not restricted to binary predictors; in the case of a continuous covariate xdisplaystyle x, it is typically assumed that the hazard responds exponentially; each unit increase in xdisplaystyle x results in proportional scaling of the hazard. The Cox partial likelihood, shown below, is obtained by using Breslow's estimate of the baseline hazard function, plugging it into the full likelihood and then observing that the result is a product of two factors. The first factor is the partial likelihood shown below, in which the baseline hazard has "canceled out". The second factor is free of the regression coefficients and depends on the data only through the censoring pattern. The effect of covariates estimated by any proportional hazards model can thus be reported as hazard ratios.


Sir David Cox observed that if the proportional hazards assumption holds (or, is assumed to hold) then it is possible to estimate the effect parameter(s) without any consideration of the hazard function. This approach to survival data is called application of the Cox proportional hazards model,[2] sometimes abbreviated to Cox model or to proportional hazards model. However, Cox also noted that biological interpretation of the proportional hazards assumption can be quite tricky.[3][4]



The Cox model[edit]


Let Xi = Xi1, … Xip be the realized values of the covariates for subject i. The hazard function for the Cox proportional hazards model has the form


λ(t|Xi)=λ0(t)exp⁡(β1Xi1+⋯+βpXip)=λ0(t)exp⁡(Xi⋅β).displaystyle lambda (t

This expression gives the hazard function at time t for subject i with covariate vector (explanatory variables) Xi.


The likelihood of the event to be observed occurring with subject i at time Yi can be written as:


Li(β)=λ(Yi|Xi)∑j:Yj≥Yiλ(Yi|Xj)=λ0(Yi)θi∑j:Yj≥Yiλ0(Yi)θj=θi∑j:Yj≥Yiθj,displaystyle L_i(beta )=frac X_i)sum _j:Y_jgeq Y_ilambda (Y_i=frac lambda _0(Y_i)theta _isum _j:Y_jgeq Y_ilambda _0(Y_i)theta _j=frac theta _isum _j:Y_jgeq Y_itheta _j,

where θj = exp(Xjβ) and the summation is over the set of subjects j where the event has not occurred before time Yi (including subject i itself). Obviously 0 < Li(β) ≤ 1. This is a partial likelihood: the effect of the covariates can be estimated without the need to model the change of the hazard over time.


Treating the subjects as if they were statistically independent of each other, the joint probability of all realized events[5] is the following partial likelihood, where the occurrence of the event is indicated by Ci=1:


L(β)=∏i:Ci=1Li(β).displaystyle L(beta )=prod _i:C_i=1L_i(beta ).

The corresponding log partial likelihood is


ℓ(β)=∑i:Ci=1(Xi⋅β−log⁡∑j:Yj≥Yiθj).displaystyle ell (beta )=sum _i:C_i=1left(X_icdot beta -log sum _j:Y_jgeq Y_itheta _jright).

This function can be maximized over β to produce maximum partial likelihood estimates of the model parameters.


The partial score function is


ℓ′(β)=∑i:Ci=1(Xi−∑j:Yj≥YiθjXj∑j:Yj≥Yiθj),displaystyle ell ^prime (beta )=sum _i:C_i=1left(X_i-frac sum _j:Y_jgeq Y_itheta _jX_jsum _j:Y_jgeq Y_itheta _jright),

and the Hessian matrix of the partial log likelihood is


ℓ′′(β)=−∑i:Ci=1(∑j:Yj≥YiθjXjXj′∑j:Yj≥Yiθj−[∑j:Yj≥YiθjXj][∑j:Yj≥YiθjXj′][∑j:Yj≥Yiθj]2).displaystyle ell ^prime prime (beta )=-sum _i:C_i=1left(frac sum _j:Y_jgeq Y_itheta _jX_jX_j^prime sum _j:Y_jgeq Y_itheta _j-frac left[sum _j:Y_jgeq Y_itheta _jX_jright]left[sum _j:Y_jgeq Y_itheta _jX_j^prime right]left[sum _j:Y_jgeq Y_itheta _jright]^2right).

Using this score function and Hessian matrix, the partial likelihood can be maximized using the Newton-Raphson algorithm. The inverse of the Hessian matrix, evaluated at the estimate of β, can be used as an approximate variance-covariance matrix for the estimate, and used to produce approximate standard errors for the regression coefficients.



Tied times[edit]


Several approaches have been proposed to handle situations in which there are ties in the time data. Breslow's method describes the approach in which the procedure described above is used unmodified, even when ties are present. An alternative approach that is considered to give better results is Efron's method.[6] Let tj denote the unique times, let Hj denote the set of indices i such that Yi = tj and Ci = 1, and let mj = |Hj|. Efron's approach maximizes the following partial likelihood.


L(β)=∏j∏i∈Hjθi∏ℓ=0m−1[∑i:Yi≥tjθi−ℓm∑i∈Hjθi].displaystyle L(beta )=prod _jfrac prod _iin H_jtheta _iprod _ell =0^m-1[sum _i:Y_igeq t_jtheta _i-frac ell msum _iin H_jtheta _i].

The corresponding log partial likelihood is


ℓ(β)=∑j(∑i∈HjXi⋅β−∑ℓ=0m−1log⁡(∑i:Yi≥tjθi−ℓm∑i∈Hjθi)),displaystyle ell (beta )=sum _jleft(sum _iin H_jX_icdot beta -sum _ell =0^m-1log left(sum _i:Y_igeq t_jtheta _i-frac ell msum _iin H_jtheta _iright)right),

the score function is


ℓ′(β)=∑j(∑i∈HjXi−∑ℓ=0m−1∑i:Yi≥tjθiXi−ℓm∑i∈HjθiXi∑i:Yi≥tjθi−ℓm∑i∈Hjθi),displaystyle ell ^prime (beta )=sum _jleft(sum _iin H_jX_i-sum _ell =0^m-1frac sum _i:Y_igeq t_jtheta _iX_i-frac ell msum _iin H_jtheta _iX_isum _i:Y_igeq t_jtheta _i-frac ell msum _iin H_jtheta _iright),

and the Hessian matrix is


ℓ′′(β)=−∑j∑ℓ=0m−1(∑i:Yi≥tjθiXiXi′−ℓm∑i∈HjθiXiXi′ϕj,ℓ,m−Zj,ℓ,mZj,ℓ,m′ϕj,ℓ,m2),displaystyle ell ^prime prime (beta )=-sum _jsum _ell =0^m-1left(frac sum _i:Y_igeq t_jtheta _iX_iX_i^prime -frac ell msum _iin H_jtheta _iX_iX_i^prime phi _j,ell ,m-frac Z_j,ell ,mZ_j,ell ,m^prime phi _j,ell ,m^2right),

where


ϕj,ℓ,m=∑i:Yi≥tjθi−ℓm∑i∈Hjθidisplaystyle phi _j,ell ,m=sum _i:Y_igeq t_jtheta _i-frac ell msum _iin H_jtheta _i

Zj,ℓ,m=∑i:Yi≥tjθiXi−ℓm∑i∈HjθiXi.displaystyle Z_j,ell ,m=sum _i:Y_igeq t_jtheta _iX_i-frac ell msum _iin H_jtheta _iX_i.

Note that when Hj is empty (all observations with time tj are censored), the summands in these expressions are treated as zero.



Time-varying predictors and coefficients[edit]


Extensions to time dependent variables, time dependent strata, and multiple events per subject, can be incorporated by the counting process formulation of Andersen and Gill.[7] One example of the use of hazard models with time-varying regressors is estimating the effect of unemployment insurance on unemployment spells.[8][9]


In addition to allowing time-varying covariates (i.e., predictors), the Cox model may be generalized to time-varying coefficients as well. That is, the proportional effect of a treatment may vary with time; e.g. a drug may be very effective if administered within one month of morbidity, and become less effective as time goes on. The hypothesis of no change with time (stationarity) of the coefficient may then be tested. Details and software (R package) are available in Martinussen and Scheike (2006).[10][11] The application of the Cox model with time-varying covariates is considered in reliability mathematics.[12]


In this context, it could also be mentioned that it is theoretically possible to specify the effect of covariates by using additive hazards,[13] i.e. specifying


λ(t|Xi)=λ0(t)+β1Xi1+⋯+βpXip=λ0(t)+Xi⋅β.X_i)=lambda _0(t)+beta _1X_i1+cdots +beta _pX_ip=lambda _0(t)+X_icdot beta .

If such additive hazards models are used in situations where (log-)likelihood maximization is the objective, care must be taken to restrict λ(t|Xi)X_i) to non-negative values. Perhaps as a result of this complication, such models are seldom seen. If the objective is instead least squares the non-negativity restriction is not strictly required.



Specifying the baseline hazard function[edit]


The Cox model may be specialized if a reason exists to assume that the baseline hazard follows a particular form. In this case, the baseline hazard λ0(t)displaystyle lambda _0(t) is replaced by a given function. For example, assuming the hazard function to be the Weibull hazard function gives the Weibull proportional hazards model.


Incidentally, using the Weibull baseline hazard is the only circumstance under which the model satisfies both the proportional hazards, and accelerated failure time models.


The generic term parametric proportional hazards models can be used to describe proportional hazards models in which the hazard function is specified. The Cox proportional hazards model is sometimes called a semiparametric model by contrast.


Some authors use the term Cox proportional hazards model even when specifying the underlying hazard function,[14] to acknowledge the debt of the entire field to David Cox.


The term Cox regression model (omitting proportional hazards) is sometimes used to describe the extension of the Cox model to include time-dependent factors. However, this usage is potentially ambiguous since the Cox proportional hazards model can itself be described as a regression model.



Relationship to Poisson models[edit]


There is a relationship between proportional hazards models and Poisson regression models which is sometimes used to fit approximate proportional hazards models in software for Poisson regression. The usual reason for doing this is that calculation is much quicker. This was more important in the days of slower computers but can still be useful for particularly large data sets or complex problems. Laird and Olivier (1981)[15] provide the mathematical details. They note, "we do not assume [the Poisson model] is true, but simply use it as a device for deriving the likelihood." McCullagh and Nelder's[16] book on generalized linear models has a chapter on converting proportional hazards models to generalized linear models.



Under high-dimensional setup[edit]


In high-dimension, when number of covariates p is large compared to the sample size n, the LASSO method is one of the classical model-selection strategies. Tibshirani (1997) has proposed a Lasso procedure for the proportional hazard regression parameter.[17] The Lasso estimator of the regression parameter β is defined as the minimizer of the opposite of the Cox partial log-likelihood under an L1-norm type constraint.


ℓ(β)=∑j(∑i∈HjXi⋅β−∑ℓ=0m−1log⁡(∑i:Yi≥tjθi−ℓm∑i∈Hjθi))+λ‖β‖1,_1,

There has been theoretical progress on this topic recently.[18][19][20][21]



See also[edit]



  • Accelerated failure time model

  • One in ten rule

  • Weibull distribution


Notes[edit]




  1. ^ Breslow, N. E. (1975). "Analysis of Survival Data under the Proportional Hazards Model". International Statistical Review / Revue Internationale de Statistique. 43 (1): 45–57. doi:10.2307/1402659. JSTOR 1402659..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  2. ^ Cox, David R (1972). "Regression Models and Life-Tables". Journal of the Royal Statistical Society, Series B. 34 (2): 187–220. JSTOR 2985181. MR 0341758.


  3. ^ Reid, N. (1994). "A Conversation with Sir David Cox". Statistical Science. 9 (3): 439–455. doi:10.1214/ss/1177010394.


  4. ^ Cox, D. R. (1997). Some remarks on the analysis of survival data. the First Seattle Symposium of Biostatistics: Survival Analysis.


  5. ^ "Each failure contributes to the likelihood function", Cox (1972), page 191.


  6. ^ Efron, Bradley (1974). "The Efficiency of Cox's Likelihood Function for Censored Data". Journal of the American Statistical Association. 72 (359): 557–565. doi:10.1080/01621459.1977.10480613. JSTOR 2286217.


  7. ^
    Andersen, P.; Gill, R. (1982). "Cox's regression model for counting processes, a large sample study". Annals of Statistics. 10 (4): 1100–1120. doi:10.1214/aos/1176345976. JSTOR 2240714.



  8. ^ Meyer, B. D. (1990). "Unemployment Insurance and Unemployment Spells". Econometrica. 58 (4): 757–782. JSTOR 2938349.


  9. ^ Bover, O.; Arellano, M.; Bentolila, S. (2002). "Unemployment Duration, Benefit Duration, and the Business Cycle". The Economic Journal. 112 (479): 223–265. doi:10.1111/1468-0297.00034.


  10. ^ Martinussen; Scheike (2006). Dynamic Regression Models for Survival Data. Springer. doi:10.1007/0-387-33960-4. ISBN 978-0-387-20274-7.


  11. ^ "timereg: Flexible Regression Models for Survival Data". CRAN.


  12. ^ Wu, S.; Scarf, P. (2015). "Decline and repair, and covariate effects". European Journal of Operational Research. 244 (1): 219–226. doi:10.1016/j.ejor.2016.07.052.


  13. ^ Cox, D. R. (1997). Some remarks on the analysis of survival data. the First Seattle Symposium of Biostatistics: Survival Analysis.


  14. ^ Bender, R.; Augustin, T.; Blettner, M. (2006). "Generating survival times to simulate Cox proportional hazards models". Statistics in Medicine. 24 (11): 1713–1723. doi:10.1002/sim.2369. PMID 16680804.


  15. ^
    Nan Laird and Donald Olivier (1981). "Covariance Analysis of Censored Survival Data Using Log-Linear Analysis Techniques". Journal of the American Statistical Association. 76 (374): 231–240. doi:10.2307/2287816. JSTOR 2287816.



  16. ^
    P. McCullagh and J. A. Nelder (2000). "Chapter 13: Models for Survival Data". Generalized Linear Models (Second ed.). Boca Raton, Florida: Chapman & Hall/CRC. ISBN 978-0-412-31760-6. (Second edition 1989; first CRC reprint 1999.)



  17. ^ Tibshirani, R. (1997). "The Lasso method for variable selection in the Cox model". Statistics in Medicine. 16 (4): 385–395. CiteSeerX 10.1.1.411.8024. doi:10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3.


  18. ^ Bradić, J.; Fan, J.; Jiang, J. (2011). "Regularization for Cox's proportional hazards model with NP-dimensionality". Annals of Statistics. 39 (6): 3092–3120. arXiv:1010.5233. doi:10.1214/11-AOS911. PMID 23066171.


  19. ^ Bradić, J.; Song, R. (2015). "Structured Estimation in Nonparametric Cox Model". Electronic Journal of Statistics. 9 (1): 492–534. arXiv:1207.4510. doi:10.1214/15-EJS1004.


  20. ^ Kong, S.; Nan, B. (2014). "Non-asymptotic oracle inequalities for the high-dimensional Cox regression via Lasso". Statistica Sinica. 24 (1): 25–42. arXiv:1204.1992. doi:10.5705/ss.2012.240. PMID 24516328.


  21. ^ Huang, J.; Sun, T.; Ying, Z.; Yu, Y.; Zhang, C. H. (2011). "Oracle inequalities for the lasso in the Cox model". The Annals of Statistics. 41 (3): 1142–1165. arXiv:1306.4847. doi:10.1214/13-AOS1098. PMID 24086091.



References[edit]



  • Bagdonavicius, V.; Levuliene, R.; Nikulin, M. (2010). "Goodness-of-fit Criteria for the Cox model from Left Truncated and Right Censored Data". Journal of Mathematical Sciences. 167 (4): 436–443. doi:10.1007/s10958-010-9929-6.


  • Cox, D. R.; Oakes, D. (1984). Analysis of Survival Data. New York: Chapman & Hall. ISBN 978-0412244902.


  • Collett, D. (2003). Modelling Survival Data in Medical Research (2nd ed.). Boca Raton: CRC. ISBN 978-1584883258.


  • Gouriéroux, Christian (2000). "Duration Models". Econometrics of Qualitative Dependent Variables. New York: Cambridge University Press. pp. 284–362. ISBN 978-0-521-58985-7.


  • Singer, Judith D.; Willett, John B. (2003). "Fitting Cox Regression Models". Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. New York: Oxford University Press. pp. 503–542. ISBN 978-0-19-515296-8.


  • Therneau, T. M.; Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox Model. New York: Springer. ISBN 978-0387987842.









Retrieved from "https://en.wikipedia.org/w/index.php?title=Proportional_hazards_model&oldid=893016886"










Navigation menu


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.652","walltime":"0.903","ppvisitednodes":"value":2044,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":196505,"limit":2097152,"templateargumentsize":"value":787,"limit":2097152,"expansiondepth":"value":12,"limit":40,"expensivefunctioncount":"value":6,"limit":500,"unstrip-depth":"value":1,"limit":20,"unstrip-size":"value":73949,"limit":5000000,"entityaccesscount":"value":5,"limit":400,"timingprofile":["100.00% 543.671 1 -total"," 65.78% 357.604 1 Template:Reflist"," 53.98% 293.487 16 Template:Cite_journal"," 19.90% 108.180 1 Template:Statistics"," 18.99% 103.232 1 Template:Navbox_with_collapsible_groups"," 12.52% 68.083 11 Template:Navbox"," 8.09% 44.000 7 Template:Cite_book"," 3.98% 21.624 1 Template:Portal"," 2.59% 14.080 4 Template:Icon"," 1.88% 10.196 2 Template:Math"],"scribunto":"limitreport-timeusage":"value":"0.318","limit":"10.000","limitreport-memusage":"value":5003185,"limit":52428800,"cachereport":"origin":"mw1252","timestamp":"20190423151552","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Proportional hazards model","url":"https://en.wikipedia.org/wiki/Proportional_hazards_model","sameAs":"http://www.wikidata.org/entity/Q223218","mainEntity":"http://www.wikidata.org/entity/Q223218","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2006-05-30T17:34:51Z","dateModified":"2019-04-18T12:11:35Z","headline":"statistical model for time-to-event data"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":103,"wgHostname":"mw1265"););

Popular posts from this blog

کانن (شرکت) محتویات تاریخچه[ویرایش] بخشی از تولیدات موفق این شرکت[ویرایش] در رده APS-C[ویرایش] گزارش محیط زیست[ویرایش] رده‌بندی محصولات[ویرایش] منابع[ویرایش] پانویس[ویرایش] پیوند به بیرون[ویرایش] منوی ناوبریwww.canon.comموزه آنلاین دوربین‌های کانننمودار تاریخچه سهام کاننوبگاه رسمی شرکت کاننوووووIDC Worldwide Hardcopy 2013

Rest API with Magento using PHP with example. Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How to update product using magento client library for PHP?Oauth Error while extending Magento Rest APINot showing my custom api in wsdl(url) and web service list?Using Magento API(REST) via IXMLHTTPRequest COM ObjectHow to login in Magento website using REST APIREST api call for Guest userMagento API calling using HTML and javascriptUse API rest media management by storeView code (admin)Magento REST API Example ErrorsHow to log all rest api calls in magento2?How to update product using magento client library for PHP?

Magento 2 - Auto login with specific URL Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Customer can't login - Page refreshes but nothing happensCustom Login page redirectURL to login with redirect URL after completionCustomer login is case sensitiveLogin with phone number or email address - Magento 1.9Magento 2: Set Customer Account Confirmation StatusCustomer auto connect from URLHow to call customer login form in the custom module action magento 2?Change of customer login error message magento2Referrer URL in modal login form