Can two odd numbers sum up to an odd number?Generating random smooth numbers (or, “What do random smooth numbers look like?”)Complete extensions of valuations from Q to R.Valuations on tensor productsValuations given by flags on a variety and valuations of maximal rational rankp-adic valuation of a sumExtension of the product formula for valuations to a simultaneous completionCompletion of a finite field extension is also finite?Structure of valuations on $mathbbF_q(X,Y)$?Relation between valuation of p-adic regulator of totally real field and its finite p-unramified abelian extensionsOstrowski's Theorem for topological rings?

Can two odd numbers sum up to an odd number?


Generating random smooth numbers (or, “What do random smooth numbers look like?”)Complete extensions of valuations from Q to R.Valuations on tensor productsValuations given by flags on a variety and valuations of maximal rational rankp-adic valuation of a sumExtension of the product formula for valuations to a simultaneous completionCompletion of a finite field extension is also finite?Structure of valuations on $mathbbF_q(X,Y)$?Relation between valuation of p-adic regulator of totally real field and its finite p-unramified abelian extensionsOstrowski's Theorem for topological rings?













6












$begingroup$


Okay, the title is a bit of a clickbait, I just want to know what properties of valuations extend to $mathbb R$...



Denote an extension of the 2-adic valuation from $mathbb Q$ to $mathbb R$ by $nu$.
Suppose $nu(x)=nu(y)=0$.



Is it true that $nu(x+y)ne 0$?



What about $nu(x^2+y^2)le 1$?



I'm interested in knowing both whether these are true for every extension, as well as knowing whether there is some extension for which they are true (for every $x$ and $y$).










share|cite|improve this question









$endgroup$
















    6












    $begingroup$


    Okay, the title is a bit of a clickbait, I just want to know what properties of valuations extend to $mathbb R$...



    Denote an extension of the 2-adic valuation from $mathbb Q$ to $mathbb R$ by $nu$.
    Suppose $nu(x)=nu(y)=0$.



    Is it true that $nu(x+y)ne 0$?



    What about $nu(x^2+y^2)le 1$?



    I'm interested in knowing both whether these are true for every extension, as well as knowing whether there is some extension for which they are true (for every $x$ and $y$).










    share|cite|improve this question









    $endgroup$














      6












      6








      6





      $begingroup$


      Okay, the title is a bit of a clickbait, I just want to know what properties of valuations extend to $mathbb R$...



      Denote an extension of the 2-adic valuation from $mathbb Q$ to $mathbb R$ by $nu$.
      Suppose $nu(x)=nu(y)=0$.



      Is it true that $nu(x+y)ne 0$?



      What about $nu(x^2+y^2)le 1$?



      I'm interested in knowing both whether these are true for every extension, as well as knowing whether there is some extension for which they are true (for every $x$ and $y$).










      share|cite|improve this question









      $endgroup$




      Okay, the title is a bit of a clickbait, I just want to know what properties of valuations extend to $mathbb R$...



      Denote an extension of the 2-adic valuation from $mathbb Q$ to $mathbb R$ by $nu$.
      Suppose $nu(x)=nu(y)=0$.



      Is it true that $nu(x+y)ne 0$?



      What about $nu(x^2+y^2)le 1$?



      I'm interested in knowing both whether these are true for every extension, as well as knowing whether there is some extension for which they are true (for every $x$ and $y$).







      nt.number-theory ra.rings-and-algebras valuation-theory valuation-rings






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 3 hours ago









      domotorpdomotorp

      10k3388




      10k3388




















          1 Answer
          1






          active

          oldest

          votes


















          7












          $begingroup$

          No. The important thing to know is that, if $K subseteq L$ is a field extension and $v: K to mathbbR$ is a valuation, then $v$ can be extended to $L$. So I can answer all of your questions by working in some easy to handle subfield of $mathbbR$. I'll work in $K = mathbbQ(sqrt5)$ for the first question and in $K = mathbbQ(sqrt3)$ for the second.



          The ring of integers in $mathbbQ[sqrt5]$ is $mathbbZ[tau]$ where $tau = tfrac1+sqrt52$, with minimal polynomial $tau^2=tau+1$. Note that $mathcalO_K/(2 mathcalO_K)$ is the field $mathbbF_4$ with two elements. Your first statement is true in $mathbbQ$ only because $mathbbZ/(2 mathbbZ)$ has two elements.



          Specifically, both $1$ and $tau$ are in $mathcalO_K$ but not $2 mathcalO_K$, so $v(1) = v(tau) = 0$, but $1+tau$ is also not in $2 mathcalO_K$ so $v(1+tau)=0$ as well.



          Similarly, the ring of integers in $mathbbQ(sqrt3)$ is $mathbbZ[sqrt3]$ and the prime $2$ is ramified, with $2 = (1+sqrt3)^2 (2-sqrt3)$ (note that $2-sqrt3$ is a unit). We have $v(1) = v(sqrt3) = 0$, but $v(1+sqrt3^2) = 2$. In this case, the result is true in $mathbbQ$ because $2$ is unramified.






          share|cite|improve this answer











          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "504"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f330019%2fcan-two-odd-numbers-sum-up-to-an-odd-number%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            7












            $begingroup$

            No. The important thing to know is that, if $K subseteq L$ is a field extension and $v: K to mathbbR$ is a valuation, then $v$ can be extended to $L$. So I can answer all of your questions by working in some easy to handle subfield of $mathbbR$. I'll work in $K = mathbbQ(sqrt5)$ for the first question and in $K = mathbbQ(sqrt3)$ for the second.



            The ring of integers in $mathbbQ[sqrt5]$ is $mathbbZ[tau]$ where $tau = tfrac1+sqrt52$, with minimal polynomial $tau^2=tau+1$. Note that $mathcalO_K/(2 mathcalO_K)$ is the field $mathbbF_4$ with two elements. Your first statement is true in $mathbbQ$ only because $mathbbZ/(2 mathbbZ)$ has two elements.



            Specifically, both $1$ and $tau$ are in $mathcalO_K$ but not $2 mathcalO_K$, so $v(1) = v(tau) = 0$, but $1+tau$ is also not in $2 mathcalO_K$ so $v(1+tau)=0$ as well.



            Similarly, the ring of integers in $mathbbQ(sqrt3)$ is $mathbbZ[sqrt3]$ and the prime $2$ is ramified, with $2 = (1+sqrt3)^2 (2-sqrt3)$ (note that $2-sqrt3$ is a unit). We have $v(1) = v(sqrt3) = 0$, but $v(1+sqrt3^2) = 2$. In this case, the result is true in $mathbbQ$ because $2$ is unramified.






            share|cite|improve this answer











            $endgroup$

















              7












              $begingroup$

              No. The important thing to know is that, if $K subseteq L$ is a field extension and $v: K to mathbbR$ is a valuation, then $v$ can be extended to $L$. So I can answer all of your questions by working in some easy to handle subfield of $mathbbR$. I'll work in $K = mathbbQ(sqrt5)$ for the first question and in $K = mathbbQ(sqrt3)$ for the second.



              The ring of integers in $mathbbQ[sqrt5]$ is $mathbbZ[tau]$ where $tau = tfrac1+sqrt52$, with minimal polynomial $tau^2=tau+1$. Note that $mathcalO_K/(2 mathcalO_K)$ is the field $mathbbF_4$ with two elements. Your first statement is true in $mathbbQ$ only because $mathbbZ/(2 mathbbZ)$ has two elements.



              Specifically, both $1$ and $tau$ are in $mathcalO_K$ but not $2 mathcalO_K$, so $v(1) = v(tau) = 0$, but $1+tau$ is also not in $2 mathcalO_K$ so $v(1+tau)=0$ as well.



              Similarly, the ring of integers in $mathbbQ(sqrt3)$ is $mathbbZ[sqrt3]$ and the prime $2$ is ramified, with $2 = (1+sqrt3)^2 (2-sqrt3)$ (note that $2-sqrt3$ is a unit). We have $v(1) = v(sqrt3) = 0$, but $v(1+sqrt3^2) = 2$. In this case, the result is true in $mathbbQ$ because $2$ is unramified.






              share|cite|improve this answer











              $endgroup$















                7












                7








                7





                $begingroup$

                No. The important thing to know is that, if $K subseteq L$ is a field extension and $v: K to mathbbR$ is a valuation, then $v$ can be extended to $L$. So I can answer all of your questions by working in some easy to handle subfield of $mathbbR$. I'll work in $K = mathbbQ(sqrt5)$ for the first question and in $K = mathbbQ(sqrt3)$ for the second.



                The ring of integers in $mathbbQ[sqrt5]$ is $mathbbZ[tau]$ where $tau = tfrac1+sqrt52$, with minimal polynomial $tau^2=tau+1$. Note that $mathcalO_K/(2 mathcalO_K)$ is the field $mathbbF_4$ with two elements. Your first statement is true in $mathbbQ$ only because $mathbbZ/(2 mathbbZ)$ has two elements.



                Specifically, both $1$ and $tau$ are in $mathcalO_K$ but not $2 mathcalO_K$, so $v(1) = v(tau) = 0$, but $1+tau$ is also not in $2 mathcalO_K$ so $v(1+tau)=0$ as well.



                Similarly, the ring of integers in $mathbbQ(sqrt3)$ is $mathbbZ[sqrt3]$ and the prime $2$ is ramified, with $2 = (1+sqrt3)^2 (2-sqrt3)$ (note that $2-sqrt3$ is a unit). We have $v(1) = v(sqrt3) = 0$, but $v(1+sqrt3^2) = 2$. In this case, the result is true in $mathbbQ$ because $2$ is unramified.






                share|cite|improve this answer











                $endgroup$



                No. The important thing to know is that, if $K subseteq L$ is a field extension and $v: K to mathbbR$ is a valuation, then $v$ can be extended to $L$. So I can answer all of your questions by working in some easy to handle subfield of $mathbbR$. I'll work in $K = mathbbQ(sqrt5)$ for the first question and in $K = mathbbQ(sqrt3)$ for the second.



                The ring of integers in $mathbbQ[sqrt5]$ is $mathbbZ[tau]$ where $tau = tfrac1+sqrt52$, with minimal polynomial $tau^2=tau+1$. Note that $mathcalO_K/(2 mathcalO_K)$ is the field $mathbbF_4$ with two elements. Your first statement is true in $mathbbQ$ only because $mathbbZ/(2 mathbbZ)$ has two elements.



                Specifically, both $1$ and $tau$ are in $mathcalO_K$ but not $2 mathcalO_K$, so $v(1) = v(tau) = 0$, but $1+tau$ is also not in $2 mathcalO_K$ so $v(1+tau)=0$ as well.



                Similarly, the ring of integers in $mathbbQ(sqrt3)$ is $mathbbZ[sqrt3]$ and the prime $2$ is ramified, with $2 = (1+sqrt3)^2 (2-sqrt3)$ (note that $2-sqrt3$ is a unit). We have $v(1) = v(sqrt3) = 0$, but $v(1+sqrt3^2) = 2$. In this case, the result is true in $mathbbQ$ because $2$ is unramified.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 2 hours ago

























                answered 2 hours ago









                David E SpeyerDavid E Speyer

                108k9284542




                108k9284542



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f330019%2fcan-two-odd-numbers-sum-up-to-an-odd-number%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    کانن (شرکت) محتویات تاریخچه[ویرایش] بخشی از تولیدات موفق این شرکت[ویرایش] در رده APS-C[ویرایش] گزارش محیط زیست[ویرایش] رده‌بندی محصولات[ویرایش] منابع[ویرایش] پانویس[ویرایش] پیوند به بیرون[ویرایش] منوی ناوبریwww.canon.comموزه آنلاین دوربین‌های کانننمودار تاریخچه سهام کاننوبگاه رسمی شرکت کاننوووووIDC Worldwide Hardcopy 2013

                    Rest API with Magento using PHP with example. Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How to update product using magento client library for PHP?Oauth Error while extending Magento Rest APINot showing my custom api in wsdl(url) and web service list?Using Magento API(REST) via IXMLHTTPRequest COM ObjectHow to login in Magento website using REST APIREST api call for Guest userMagento API calling using HTML and javascriptUse API rest media management by storeView code (admin)Magento REST API Example ErrorsHow to log all rest api calls in magento2?How to update product using magento client library for PHP?

                    Magento 2 - Auto login with specific URL Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Customer can't login - Page refreshes but nothing happensCustom Login page redirectURL to login with redirect URL after completionCustomer login is case sensitiveLogin with phone number or email address - Magento 1.9Magento 2: Set Customer Account Confirmation StatusCustomer auto connect from URLHow to call customer login form in the custom module action magento 2?Change of customer login error message magento2Referrer URL in modal login form